PCMSolver

Roberto Di Remigio, Luca Frediani and contributors

Dec 01, 2020

TABLE OF CONTENTS

1 PCMSolver Users’ Manual 3
1.1 Buildingthemodule 3
1.2 Inputdescription e 6
1.3 Input parameters o o it i e e e e e e e e e e e e e e 8
1.4 Interfacing a QM program and PCMSolver e 18
1.5 Interfacing with a Fortran host e e 35
1.6 Interfacing withaChost e 39
2 Publications 43
2.1 Peer-reviewed journal articles L e 43
2.2 TRhESES . . v o o e e e 43
2.3 Presentations v i i e e e e e e e e e e e e e e e e e e e 44
2.4 POSIEIS & v v i e 44
3 PCMSolver Programmers’ Manual 45
3.1 General StruCture o i i e e e e e e e e e e e e 45
32 Codingstandardso e e e e 46
3.3 Documentationo e e e e e e e e e e e e e e e 48
34 CMaKe usage . . . v v v v v e e e e e e e e e e e e e e e e e e 50
3.5 Versioning and minting anew release oL e el e 51
3.6 Codecontributions L e e e e e e e e e e 56
3.7 Changelog o e 57
3.8 Updating Eigen Distribution e e e e e e 57
39 GitPre-Commit Hooks e 57
3.10 Profiling . . . L e e e e e e e 58
31 Testing o oo e e e e 60
312 Timerclass o o e e e e e e e e e e e e e e e 64
4 Classes and functions reference 65
41 CavitieS . . . v v e e e e e e e e e e e e e e e e 65
42 Greens Functions e e e e e e 68
4.3 Dielectric profiles L e e e e e e e e e e e 81
44 SOIVEIS . . o v ot e e e 86
4.5 Boundary integral operators Lo e e e e e e 91
4.6 Helperclasses and functions L 94
5 References 105
6 Indices and tables 107
Bibliography 109

Index 111

PCMSolver

This is the documentation for the PCMSolver application programming interface. PCMSolver is an API for solving
the Polarizable Continuum Model electrostatic problem [TMCO05]

Input parsing

: PCM code _
input.pcm }—— | MICI{:U::-SldE
:))
PCMsolver
Input parsing
! q
input.gm }—.: QM code Program-side
. Hyr=Ey interface
Program

With PCMSolver we aim to:
1. provide a plug-and-play library for adding the PCM functionality to any quantum chemistry program;
2. create a playground for easily extending the implementation of the model.

PCMSolver is distributed under the terms of the GNU Lesser General Public License. An archive with the currently
released source can be found on GitHub.

@misc{PCMSolver,

note = "{\texttt{PCMSolver}, an open-source library for the polarizable continuum_
—model

electrostatic problem, written by R.~Di~Remigio,

L.~Frediani and contributors (see http://pcmsolver.readthedocs.io/) }"

doi= "10.5281/zenodo.1156166"

}

PCMSolver has been added to the following quantum chemistry programs
* Psi4
* DALTON
* LSDALTON
* DIRAC

TABLE OF CONTENTS 1

https://github.com/PCMSolver/pcmsolver/releases
http://www.psicode.org/
http://daltonprogram.org/
http://daltonprogram.org/
http://www.diracprogram.org/

PCMSolver

* ReSpect
* KOALA

Don’t see you code listed here? Please contact us.

2 TABLE OF CONTENTS

http://www.respectprogram.org/
https://dx.doi.org/10.1002/jcc.23679
mailto:roberto.d.remigio@uit.no

CHAPTER
ONE

PCMSOLVER USERS’ MANUAL

1.1 Building the module

PCMSolver configuration and build process is managed through CMake.

1.1.1 Prerequisites and dependencies

A number of prerequisites and dependencies are to be satisfied to successfully build the module. It will be here
assumed that you want to perform a “full” build, i.e. you want to build the static libraries to be linked to your QM
program, the unit test suite and an offline copy of this documentation.

Compilers

* a C++ compiler, compliant with the 2011 ISO C++ standard. The build system will downgrade to using the
1998 ISO C++ standard plus the 2003 technical corrigendum and some additional defect reports, if no suitable
support if found.

Warning: Backwards compatibility support for the C++03 standard is deprecated and will be removed in
upcoming releases of the library.

¢ a C compiler, compliant with the ISO C99 standard.
* a Fortran compiler, compliant with the Fortran 2003 standard.

The list of primary test environments can be found in the README.md file. It is entirely possible that using other
compiler versions you might be able to build the module. In order to ensure that you have a sane build, you will have
to run the unit test suite.

Libraries and toolchain programs

* CMake version 3.3 and higher;
* Git version 1.7.1 and higher;
 Python interpreter 2.7 and higher;

* Boost libraries version 1.54.0 and higher;

https://github.com/PCMSolver/pcmsolver/blob/master/README.md

PCMSolver

Note: Version 1.54.0 of Boost libraries is shipped with the module and resides in the cmake/downloaded subdi-
rectory. Unless you want to use another version of Boost, you should not worry about satisfying this dependency.

* zlib version 1.2 and higher (unit test suite only);

* Doxygen version 1.7.6 and higher (documentation only)
* Perl (documentation only)

 Sphinx (documentation only)

PCMSolver relies on the Eigen template libraries version 3.3.0 and higher. Version 3.3.0 of Eigen libraries is shipped
with the module and resides in the external subdirectory.

1.1.2 Configuration

Configuration is managed through the front-end script setup . py residing in the repository main directory. Issuing:

./setup [options] [build path]

will create the build directory in build path and run CMake with the given options. By default, files are configured
in the build directory. The —~h or ——help option will list the available options and their effect. Options can be
forwarded directly to CMake by using the ——cmake-options flag and listing the -D. . . options. Usually the
following command is sufficient to get the configuration done for a debug build, including compilation of the unit test
suite:

./setup -—-type=debug

The unit tests suite is always compiled in standalone mode, unless the -DENABLE_TESTS=0FF option is forwarded
to CMake.

Getting Boost

You can get Boost libraries in two ways:
* already packaged by your Linux distribution or through MacPorts/Brew;
* by downloading the archive from http://www.boost.org/ and building it yourself.

In case your distribution packages a version older than 1.54.0 you might chose to either build Boost on your own
or to rely on the automated build of the necessary Boost libraries when compiling the module (recommended). Full
documentation on how to build Boost on Unix variants is available here. It is here assumed that the user does not
have root access to the machine and will install the libraries to a local prefix, a subdirectory of /home /user—name
tipically. Once you’ve downloaded and unpacked the archive, run the bootstrap script to configure:

cd path/to/boost
./bootstrap.sh --prefix=/home/user—-name/boost

Running . /bootstrap.sh —--help will list the available options for the script. To build run:

./b2 install

This might take a while. After a successful build you will find the headers in /home/user—-name/boost/
include and libraries in /home /user—-name/boost/1ib Now, you will have Boost in a nonstandard location.
Without hints CMake will not be able to find it and configuration of PCMSolver will fail. To avoid this, you will have
to pass the location of the headers and libraries to the setup script, either with:

4 Chapter 1. PCMSolver Users’ Manual

http://www.zlib.net/
http://www.boost.org/
http://www.boost.org/doc/libs/1_56_0/more/getting_started/unix-variants.html

PCMSolver

./setup —--boost-headers=/home/user-name/boost/include --boost-libs=/home/user-name/
—boost/1ib
or with:

./setup —-DBOOST_INCLUDEDIR=/home/user—name/boost/include -DBOOST_LIBRARYDIR=/home/
—user-name/boost/1ib

Advanced configuration options

These options are marked as advanced as it is highly unlikely they will be useful when not programming the library:

—-—exdiag Enable C++ extended diagnostics flags. Disabled by default.

——ccache Enable use of ccache for C/C++ compilation caching. Enabled by default, unless ccache is not
available.

--build-boost Deactivate Boost detection and build on-the-fly. Disabled by default.

——eigen Root directory for Eigen3. Search for Eigen3 in the location provided by the user. If search fails, fall
back to the version bundled with the library.

——static Create only static library. Disabled by default.

Some options can only be tweaked via ——cmake-options to the setup script:

ENABLE_DOCS Enable build of documentation. This requires a number of additional dependencies. If any of
these are not met, documentation is not built. Enabled by default.

ENABLE_LOGGER Enable compilation of logger sources. Disabled by default.

Warning: The logger is not currently in use in any part of the code.

ENABLE_TIMER Enable compilation of timer sources. Enabled by default.

BUILD_STANDALONE Enable compilation of standalone run_pcm executable. Enabled by default.
TEST_Fortran_APT Test the Fortran 90 bindings for the API. Enabled by default.
ENABLE_GENERIC Enable mostly static linking in shared library. Disabled by default.
ENABLE_TESTS Enable compilation of unit tests suite. Enabled by default.
SHARED_LIBRARY_ONLY Create only shared library. Opposite of ——static.

PYMOD_INSTALL_LIBDIR If set, installs python scripts/modules to
${CMAKE_INSTALL_LIBDIR}${PYMOD_INSTALL_LIBDIR}/pcmsolver rather than the default
${CMAKE_INSTALL_BINDIR} (i.e., bin).

CMAKE_INSTALIL_BINDIR Where to install executables, if not to bin.
CMAKE_INSTALL_LIBDIR Where to install executables, if not to bin.
CMAKE_INSTALIL_INCLUDESDIR Where to install executables, if not to bin.

CMAKE_INSTALIL_BINDIR Location within CMAKE_INSTALL_PREFIX (——prefix) to which executa-
bles are installed (default: bin).

CMAKE_INSTALL_LIBDIR Location within CMAKE_INSTALL_PREFIX (——prefix) to which libraries
are installed (default: 1ib).

1.1.

Building the module 5

PCMSolver

e CMAKE_INSTALL_INCLUDEDIR Location within CMAKE_INSTALL_PREFIX (——-prefix’) to which
headers are installed (default: include).

e PYMOD_INSTALL_LIBDIR If set, location within CMAKE_INSTALL_LIBDIR to which python modules
aminﬂﬂkd,${CMAKE_INSTALL_LIBDIR}/${PYMOD_INSTALL_LIBDIR}/pcmsolven UthSw,
python modules installed to default $ { CMAKE_INSTALL_LIBDIR}/python/pcmsolver.

1.1.3 Build and test

To compile and link, just go to the build directory and run:

make -j N

where N is the number of cores you want to use when building.

Note: Building on more than one core can sometimes result in a “race condition” and a crash. If that happens, please
report the problem as an issue on our issue tracker on GitHub. Running make on a single core might get you through
compilation.

To run the whole test suite:

’ctest -J N

You can also use CTest to run a specific test or a set of tests. For example:

’ctest -R gepol

will run all the test containing the string “gepol” in their name.

1.2 Input description

PCMSolver needs a number of input parameters at runtime. The API provides two ways of providing them:
1. by means of an additional input file, parsed by the go_pcm. py script;
2. by means of a special section in the host program input.

Method 1 is more flexible: all parameters that can be modified by the user are available. The host program needs
only copy the additional input file to the scratch directory before execution. Method 2 just gives access to the core
parameters.

In this page, input style and input parameters available in Method 1 will be documented.

Note that it is also possible to run the module standalone and use a classical charge distribution. The classical charge
distribution can be specified by giving a molecular geometry in the molecule section and an additional point multipoles
distribution in the charge distribution section. The run_pcm executable has to be compiled for a standalone run with:

python <build-path/bin>/go_pcm.py —--exe <build-path/bin> —--inp molecule.inp

where the molecule. inp input file looks like:

units = angstrom
codata = 2002
medium

(continues on next page)

6 Chapter 1. PCMSolver Users’ Manual

PCMSolver

(continued from previous page)

solvertype = cpcm
correction = 0.5
solvent = cyclohexane

cavity

{
type = gepol
area = 0.6
radiiset = uff
mode = implicit

}

molecule

{
%, v, z2, q
geometry = [0.000000000, 0.00000000,
0.000000000, 0.00000O0O0OQ,

0.08729478,
-1.64558444,

9

.0,

The script and the executable do not need to be in the same directory.

1.2.1 Input style

The input for PCMSolver is parsed through the Getkw library written by Jonas Juselius and is organized in sections
and keywords. Input reading is case-insensitive. An example input structure is shown below, there are also some
working examples in the directory examples. A general input parameter has the following form (Keyword = [Data

type]):

Units = [String]

CODATA = [Integer]

Cavity {
Type = [String]
NpzFile = [String]
Area = [Double]
Scaling = [Bool]
RadiiSet = [String]
MinRadius = [Double]
Mode = [String]
Atoms = [Array of Integers]
Radii = [Array of Doubles]
Spheres = [Array of Doubles]

}

Medium {
Nonequilibrium = [Bool]
Solvent = [String]
SolverType = [String]
MatrixSymm = [Bool]
Correction = [Double]
DiagonallIntegrator = [String]
DiagonalScaling = [Double]
ProbeRadius = [Double]
Green<GreenTag> {

Type = [String]

(continues on next page)

1.2. Input description

https://github.com/juselius/libgetkw

PCMSolver

(continued from previous page)

Der = [String]
Eps = [Double]

EpsDyn = [Double]
Epsl = [Double]
EpsDynl = [Double]
Eps2 = [Double]
EpsDyn2 = [Double]
Center = [Double]
Width = [Double]
InterfaceOrigin = [Array of Doubles]
MaxL = [Integer]
}
}
Molecule {
MEP = [Bool]
Geometry = [Double]

}

ChargeDistribution {
Monopoles = [Double]
Dipoles = [Double]

}

MMFQ {
SitesPerFragment = [Integer]
Sites = [Array of Doubles]
NonPolarizable = [Bool]

Array-valued keywords will expect the array to be given in comma-separated format and enclosed in square brackets.
The purpose of tags is to distinguish between cases in which multiple instances of the same kind of object can be
managed by the program. There exist only certain legal tagnames and these are determined in the C++ code. Be aware
that the input parsing script does not check the correctness of tags.

1.3 Input parameters

Available sections:
* top section: sets up parameters affecting the module globally;
» Cavity: sets up all information needed to form the cavity and discretize its surface;

* Medium: sets up the solver to be used and the properties of the medium, i.e. the Green’s functions inside and
outside the cavity;

* Green, subsection of medium. Sets up the Green’s function inside and outside the cavity.
* Molecule: molecular geometry to be used in a standalone run.

* ChargeDistribution: sets up a classical multipolar (currently up to dipoles) charge distribution to use as addi-
tional source of electrostatic potential.

Note: The Molecule and ChargeDistribution sections only make sense in a standalone run, i.e. when using the
run_pcm executable.

8 Chapter 1. PCMSolver Users’ Manual

PCMSolver

Warning: Exactly matching results obtained from implementations of [IEFPCM and/or CPCM (COSMO) given in
other program packages requires careful selection of all the parameters involved. A partial checklist of parameters
you should always keep in mind:

* solvent permittivities (static and optical)
* atomic radii set

* scaling of the atomic radii

* cavity surface

e cavity partition (tesselation)

* PCM matrix formation algorithm

* strategy used to solve the PCM linear equations system.

1.3.1 Top section keywords
Units Units of measure used in the input file. If Angstrom is given, all relevant input parameters are first converted in
au and subsequently parsed.
* Type: string
 Valid values: AU | Angstrom
¢ Default: No Default
CODATA Set of fundamental physical constants to be used in the module.
* Type: integer
¢ Valid values: 2010 1 2006 | 2002 | 1998
¢ Default: 2010

1.3.2 Cavity section keywords
Type The type of the cavity. Completely specifies type of molecular surface and its discretization. Only one type is
allowed. Restart cavity will read the file specified by NpzFile keyword and create a GePol cavity from that.
* Type: string
¢ Valid values: GePol | Restart
* Default: none
NpzFile The name of the . npz file to be used for the GePol cavity restart.
» Type: string
¢ Default: empty string
Area Average area (weight) of the surface partition for the GePol cavity.
* Type: double
* Valid values: d > 0.01 a.u.2
* Valid for: GePol cavity

o Default value: 0.3 a.u.?

1.3. Input parameters 9

PCMSolver

Scaling If true, the radii for the spheres will be scaled by 1.2. For finer control on the scaling factor for each sphere,
select explicit creation mode.

» Type: bool
* Valid for: all cavities except Restart
* Default value: True

RadiiSet Select set of atomic radii to be used. Currently Bondi-Mantina [Bondi64][MantinaChamberlinValero+09],
UFF [RCC+92] and Allinger’s MM3 [AZB94] sets available, see Available radii.

* Type: string
 Valid values: Bondi | UFF | Allinger
* Valid for: all cavities except Restart

¢ Default value: Bondi

Note: Radii in Allinger’s MM3 set are obtained by dividing the value in the original paper by 1.2, as done in
the ADF COSMO implementation We advise to turn off scaling of the radii by 1.2 when using this set.

MinRadius Minimal radius for additional spheres not centered on atoms. An arbitrarily big value is equivalent to
switching off the use of added spheres, which is the default.

* Type: double
¢ Valid values: d > 0.4 a.u.
* Valid for: GePol cavity
* Default value: 100.0a.u.
Mode How to create the list of spheres for the generation of the molecular surface:

* in Implicit mode, the atomic coordinates and charges will be obtained from the QM host program. Spheres
will be centered on the atoms and the atomic radii, as specified in one the built-in sets, will be used. Scaling
by 1.2 will be applied according to the keyword Scaling;

* in Atoms mode, the atomic coordinates and charges will be obtained from the QM host program. For the
atoms specified by the array given in keyword Atoms, the built-in radii will be substituted by the radii
provided in the keyword Radii. Scaling by 1.2 will be applied according to the keyword Scaling;

« in Explicit mode, both centers and radii of the spheres are to be specified in the keyword Spheres. The user
has full control over the generation of the list of spheres. Scaling by 1.2 is not applied, regardless of the
value of the Scaling keyword.

» Type: string
 Valid values: Implicit | Atoms | Explicit
* Valid for: all cavities except Restart
¢ Default value: Implicit
Atoms Array of atoms whose radius has to be substituted by a custom value.
» Type: array of integers
* Valid for: all cavities except Restart
Radii Array of radii replacing the built-in values for the selected atoms.

* Type: array of doubles

10 Chapter 1. PCMSolver Users’ Manual

https://www.scm.com/doc/ADF/Input/COSMO.html

PCMSolver

* Valid for: all cavities except Restart

Spheres Array of coordinates and centers for construction of the list of spheres in explicit mode. Format is
[...,$i,yi72i,Ri,...]

» Type: array of doubles

* Valid for: all cavities except Restart

1.3.3 Medium section keywords
SolverType Type of solver to be used. All solvers are based on the Integral Equation Formulation of the Polarizable
Continuum Model [CancesMennucci98]
* IEFPCM. Collocation solver for a general dielectric medium
¢ CPCM. Collocation solver for a conductor-like approximation to the dielectric medium
» Type: string
* Valid values: IEFPCM | CPCM
¢ Default value: [IEFPCM
Nonequilibrium Initializes an additional solver using the dynamic permittivity. To be used in response calculations.
¢ Type: bool
* Valid for: all solvers
* Default value: False

Solvent Specification of the dielectric medium outside the cavity. This keyword must always be given a value. If
the solvent name given is different from Explicit any other settings in the Green’s function section will be
overridden by the built-in values for the solvent specified. See Table Available solvents for details. Solvent
= Explicit, triggers parsing of the Green’s function sections.

» Type: string

* Valid values:

Water , H20;

— Propylene Carbonate , C4H603;

— Dimethylsulfoxide , DMSO;
— Nitromethane , CH3NO?2;

— Acetonitrile , CH3CN;

— Methanol , CH30H;

— Ethanol , CH3CH20H;

— Acetone , C2H6CO;

— 1,2-Dichloroethane , C2ZH4CL2;
— Methylenechloride , CH2CL2;
— Tetrahydrofurane , THF;

— Aniline , C6H5NH2;

— Chlorobenzene , C6H5CL;

— Chloroform , CHCL3;

1.3. Input parameters 11

PCMSolver

Toluene , COHSCH3;
1,4-Dioxane , C4H802;

— Benzene , C6HO6;

Carbon Tetrachloride , CCL4;
Cyclohexane , C6H12;
N-heptane , CTH16;

Explicit.

MatrixSymm If True, the PCM matrix obtained by the IEFPCM collocation solver is symmetrized K := K%KT
e Type: bool

* Valid for: IEFPCM solver

¢ Default: True

e—1
e+k

Correction Correction, k for the apparent surface charge scaling factor in the CPCM solver f(g) =
e Type: double
* Valid values: £ > 0.0
* Valid for: CPCM solver
* Default: 0.0
Diagonallntegrator Type of integrator for the diagonal of the boundary integral operators
» Type: string
* Valid values: COLLOCATION
* Valid for: IEFPCM, CPCM
¢ Default: COLLOCATION
* Notes: in future releases we will add PURISIMA and NUMERICAL as options
DiagonalScaling Scaling factor for diagonal of collocation matrices
e Type: double
¢ Valid values: f > 0.0
« Valid for: IEFPCM, CPCM
Default: 1.07

L]

* Notes: values commonly used in the literature are 1.07 and 1.0694

ProbeRadius Radius of the spherical probe approximating a solvent molecule. Used for generating the solvent-
excluded surface (SES) or an approximation of it. Overridden by the built-in value for the chosen solvent.

¢ Type: double
* Valid values: d € [0.1,100.0] a.u.
* Valid for: all solvers

¢ Default: 1.0

12 Chapter 1. PCMSolver Users’ Manual

PCMSolver

1.3.4 Green section keywords

If Solvent = Explicit, two Green’s functions sections must be specified with tags inside and outside,
i.e. Green<inside> and Green<outside>. The Green’s function inside will always be the vacuum, while the
Green’s function outside might vary.

Type Which Green’s function characterizes the medium.
» Type: string
* Valid values: Vacuum | UniformDielectric | SphericalDiffuse | SphericalSharp
* Default: Vacuum
Der How to calculate the directional derivatives of the Green’s function:
* Numerical, perform numerical differentiation debug option;
* Derivative, use automatic differentiation to get the directional derivative;
* Gradient, use automatic differentiation to get the full gradient debug option;
 Hessian, use automatic differentiation to get the full hessian debug option;
* Type: string

¢ Valid values: Numerical | Derivative | Gradient | Hessian

Default: Derivative

Note: The spherical diffuse Green’s function always uses numerical differentiation.

Eps Static dielectric permittivity of the medium
* Type: double
¢ Valid values: € > 1.0
e Default: 1.0
EpsDyn Dynamic dielectric permittivity of the medium
* Type: double
¢ Valid values: € > 1.0
e Default: 1.0
Profile Functional form of the dielectric profile
* Type: string
 Valid values: Tanh | Erf | Log
* Valid for: SphericalDiffuse
e Default: Log
Eps1 Static dielectric permittivity inside the interface
e Type: double
¢ Valid values: £ > 1.0
* Valid for: SphericalDiffuse, SphericalSharp
e Default: 1.0

1.3. Input parameters 13

PCMSolver

EpsDynl Dynamic dielectric permittivity inside the interface
e Type: double
¢ Valid values: € > 1.0
* Valid for: SphericalDiffuse, SphericalSharp
e Default: 1.0
Eps2 Static dielectric permittivity outside the interface
¢ Type: double
¢ Valid values: ¢ > 1.0
* Valid for: SphericalDiffuse, SphericalSharp
 Default: 1.0
EpsDyn2 Dynamic dielectric permittivity outside the interface
* Type: double
¢ Valid values: £ > 1.0
* Valid for: SphericalDiffuse, SphericalSharp
e Default: 1.0
Center Center of the interface layer. This corresponds to the radius of the spherical droplet.
* Type: double
* Valid for: SphericalDiffuse, SphericalSharp
e Default: 100.0 a.u.
Width Physical width of the interface layer. This value is divided by 6.0 internally.
¢ Type: double
* Valid for: SphericalDiffuse
e Default: 5.0 a.u.

Warning: Numerical instabilities may arise if a too small value is selected.

InterfaceOrigin Center of the spherical droplet
» Type: array of doubles
* Valid for: SphericalDiffuse, SphericalSharp
* Default: [0.0,0.0,0.0]

MaxL. Maximum value of the angular momentum in the expansion of the Green’s function for the spherical diffuse
Green’s function

* Type: integer
* Valid for: SphericalDiffuse, SphericalSharp
* Default: 30

14 Chapter 1. PCMSolver Users’ Manual

PCMSolver

1.3.5 Molecule section keywords

It is possible to run the module standalone and use a classical charge distribution as specified in this section of the
input. The run_pcm executable has to be compiled for a standalone run with:

python go_pcm.py —-x molecule.inp

where the molecule. inp input file looks like:

units = angstrom

codata = 2002

medium

{
solvertype = cpcm
correction = 0.5

solvent = cyclohexane
}
cavity

{
type = gepol

area = 0.6
radiiset = uff
mode = implicit
}
molecule

{
X/ y/ Z/ q
geometry = [0.000000000, 0.00000000, 0.08729478, 9.0,
0.000000000, 0.00000000, -1.64558444,

Geometry Coordinates and charges of the molecular aggregate. Format is [. .., 2;, y;, i, Q:, . . .| Charges are always
assumed to be in atomic units

* Type: array of doubles

1.3.6 ChargeDistribution section keywords

Set a classical charge distribution, inside or outside the cavity No additional spheres will be generated.
Monopoles Array of point charges Format is [. .., z;, yi, zi, Qs - -]
» Type: array of doubles

Dipoles Array of point dipoles. Formatis [. .., x;, ys, 2i, fx, , fy; » [, - - -] The dipole moment components are always
read in atomic units.

* Type: array of doubles

1.3. Input parameters 15

PCMSolver

1.3.7 MMFQ section keywords
Set a classical fluctuating charge force field. This is incompatible with any options specifying a continuum model. No
additional spheres will be generated.
SitesPerFragment Number of sites per MM fragment. For water this is 3.
* Type: integer
¢ Default: 3
Sites Array of MM sites for the FQ model Format is [. . ., z;, y;, z;, chi;, eta; . . .|
* Type: array of doubles
NonPolarizable Whether to make this force field nonpolarizable.
¢ Type: bool
* Default: false

1.3.8 Available radii

11A 18 VIIIA
L 120 2 140
1 H Bondi—Mantina Radii Set He
g | 2 1IA 1BIA 14IVA 15VA 16VIA 17VIA | e
s 182 |s 153 s 192]s 170]r 155[s 152[s 147 |10 154
2| Be B c N o F Ne
Lithium Beryllium Boron Carbon Nitrogen Oxygen Flourine Neon
u 227 | 173 s 184 |w 210 180 |1 180 |1 175 |1 188
3| Na Mg Al Si P s c Ar

Sodium Magnesium 3 11A 41vVB 5VB 6 VIB 7VIB 8VIIB 9VIIB 10VIB 111B 1211B
19 275|220 231|a 00|22 00|23 002 002 00 00(f2r 00| 163|20 140 |30 139 |xm 187 | 211 |3 1.85 (3 1.90 (35 1.85 |3 2.02

Aluminium Silicon Phosphorus Sulphur Chlorine Argon

4 K Ca Sc Ti v Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Potassium Caleium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper. Zine Gallium ‘Germanium Arsenic Selenium Bromine. Krypton
37 303 |3 2493 00 (fa 00|ax 00 (a2 00|as 00 as 00 |as 00 a6 163 |a7 1.72 [as 158 a0 193 |s0 217 |51 2.06 |2 206 [s3 1.98 |sa 2.16
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sh Te 1 Xe
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium lodine Xenon

55 343 |s6 268 [. 5771 2 007 .00 |7 00| 00w 00w 00w 1757 1.66|s0 155 |a 196 |2 202 |ss 207 |ssa 197 [ss 2.02 [ss 2.20

6 Cs Ba La-Lu Hf Ta W |--Re | Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Caesium Barium L:"n,_thamd& Halfnium Tantalum Tungsten Rhenium @i | P, Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon
w348 |ss 283 [eim 00 16 00w 00 w 00[ws 00[ume 00w 00l 00|us oofm 00f[ms 00w o0ofw 00w o0
7 Fr Ra “Ac-Lr CSgitBh | Hs Mt Ds Rg Uub ‘Yut....| Uug Uup Uuh Uus Uuo
Francium Radium Hctinide” Dubrium Seaborgium Bohriom |~ Riassom | Maitaerum | Darmstadtium | Roentgenium | Ununbium Ununtrum | Ununquadiom | Usdnpentiom. .| Ununhexum | Ununseptiom | Ununoctium
” ss 00(ss 00|ss 00 e.. 00|e 00[ez 00[es 006 0065 00|66 ~00|er. 00| 00|es 00| 00|n 00
z radius 423500000, b
La Ce Pr Nd Pin----|{.. Sm Eu Gd Tb Dy “-Ho.. Er|..Tm Yb Lu
Symbol R | | I (S
N Lanthanum Cerium Praseodymium | Neodymium Promethium Samarium “Europium .. [Gadolinium Terbium Dysprosium Holmium Erbium " Thulium Yiterbiiii | - Lutetium
are : . =

89 0.0 [0 00|ox 00 (fs2 00| 0.0 | s 0.0 |95 0.0 |96 0.0 |o7 0.0 |98 00 |50 10 00|11 00 w2 00|13 00
Ac Th Pa u Np Pu Am Cm Bk cf Es Fm -Md. | No Lr

Actinium Therium Protactinium Uranium Nepturium Plutonium Americium Curium Berkelium Califorium Einsteinium Fermium Mendelevium Nobeliirn' **-F - Lawrencium

16 Chapter 1. PCMSolver Users’ Manual

PCMSolver

1IA 18 VIIIA
1 1.4430 2 1.81
1 H UFF Radii Set He
warogen | 2 1A BIUA 14IVA 15VA 16VIA 17VIA | weum
3 1.2255 [a 13725 5 20415 (6 1.9255 (7 1.83 |8 175 |9 1.682 |10 1.6215
2 Li Be B C N o F Ne
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
1 1.4915 |12 15105 13 2.2495 |14 21475 [15 20735 [16 2.0175 |17 1.9735 (18 1.934
3| Na Mg Al Si P S cl Ar
sosom | Mogesom | 3MA 4IVB 5VB 6VIB 7VIB 8VIIB OVIB 10VIIB 1118 121B | mummem | sicn | Proshons | Suphr Chorne .
19 1.9060 [20 1.6995 |21 1.6475 |22 1.5875 |23 1.5720 |24 1.5115 |25 1.4805 |26 1.4560 |27 1.4360 |28 1.4170 |20 1.7475 |30 1.3815 |31 2.1915 |32 214 |33 2115 |3a 21025 |35 2.0945 |36 2.0705
4 K Ca Sc Ti \" Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium ‘Germanium Arsenic Selenium Bromine Krypton
37 2.0570 |38 1.8205 |39 1.6725 40 1.5620 |41 1.5825 |42 1526 |a3 1.499 |44 1.4815 (a5 1.4645 |46 1.4495 |47 1.5740 |a8 1.4240 |49 2.2315 [s0 2.1960 |51 2.2100 |s2 2.2350 |s3 225 |54 2.2020
5| Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag cd In Sn Sb Te 1 Xe
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium lodine Xenon
55 2.2585 [s6 1.8515 57-71 72”1‘.57(‘)5 T73---1.850 |74 1.5345 |75 1.4770 |76 1.5600 |77 1.4200 |78 1.3770 |79 1.6465 |80 1.3525 |81 2.1735 |82 2.1485 |83 2.1850 |84 2.3545 |85 2.3750 |86 2.3825
6 Cs Ba "I_.a—Lu Hf Ta w Re Os Ir Pt Au Hg TI Pb Bi Po At Rn
Caesium Barium u"n,_ehamdﬁ Hafnium Tantalum Tungsten Rhenium Osmium Widivg Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon
a7 2.4500 |88 1.8385 |- xs:'n_n 104. """ 0.0 f 105 . 0.0 | 108 0.0 | 107 0.0 [108 0.0 | 100 0.0 | 110 00 10,0, 12 00 |13 0.0 | 114 0.0 | 115 0.0 | 116 0.0 | 117 0.0 | 118 0.0
7 Fr Ra Ac-Lr RE b | SgiiitBh. Mt Ds Rg Uub [Uue.... | Uug Uup Uuh Uus Uuo
Francium Radium @mdc"_‘ (s || B Seaborgium Bohrium | (2| Meosrum, | Damstadium | Roentgerium | Ununbium e || Gt || e, | Unhesum | Unsrseptiom | Ununoctium
S g 57 1.7610 |58 1.7780 5‘9‘ 1.8030 | 60...1.7875 |61 1.7735 |62 1.7600 |63 1.7465 [sa 1.6840 |65 l‘.'7255‘ 66 '1:7140. |.67 1.7045 | 8 1.6955 69 1.6870 |70 1.6775 |71 1.8200
radius o LR N b
La Ce Pr Nd “Pm--.[. Sm Eu Gd Tb Dy -Ha_, Er - Tm Yb Lu
Symbol 50000, . o
N Lanthanum Cerium Praseodymium | Neodymium Promethium Samarium Europium . .| Gadolinium Terbium Dysprosium Holmium Erbium Tholiom Yeeerbiins | Lutetium
89 1.7390 |90 1.6980 |91 1.7120 |92 1.6975 |93 1.7120 [9sa 1.7120 |95 1.6905 |96 1.6630 |97 1.6695 |98 16565 ‘997" 1.6495 1110”1.6430 101 1.6370 | 102 1.6240 | 103 1.6180
Ac Th Pa 1] Np Puw Am Cm Bk Cf Es Fom - Md, No Lr
Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelu' "~ - Lawtencium
11A 18 VIIA
L 13 2 1275
1| H Allinger's MM3 Radii Set He
Hpogn | 2 1IA 1BIA 4IVA 15VA I6VIA 1I7VIA | e
3 2125 |41.85833 5179167 [170 [71.60833 [o1.51667 o 1425 | 138433
2 Li Be B [N o] F Ne
Lithium Benyllum Baron Carbon Mitragen Oygen Flucrine -
n o 225 1z 2025 106667 | 1obk33 |1+ 185 | 17867 |w 1725 | 1683
3 Na Mg Al Si P S cl Ar
dun | e | 3MA 4IVB 5VB 6VIB TVIB BVIIB 9VIIB 10VIB 118 1208 | [ol | s | e | e v
w 2575 | 53¥67 |2 2175 | 108167 | 100833 |2 1875 | 188667 | 188333 | 188833 |= 185 [18833 | rodess [u 205 | 203533 | 198667 | 1ofkaz |= 185 | 17d%er
4 K Ca Sc Ti v Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Potasum Calcium Seandum Titanim Vanadium Chramium Manganese Iran Cobalt Nickel Copper Zine Gallum Garmanum Antesic Selenium Bromine Krypton
278833 |3 25| 20833 | 2.afber |# 2025 | 108167 | 108667 |4 195 |e 195 |w 1075 [ar 2005 | poffzy (e 22| pqda3 s 21| 2ofha3 | 19ber | 19
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag cd In Sn Sb Te 1 Xe
Rubidim Strentium it Zaconium Nisbium Molbdenum | Technetiom | Ruthenium Erim (et Sher Cadmium) Tin Amtimany Telwium lodine —
288667 | 25843 [| 210835 [o-2025 | 1ofier [1975 | 1obbas | 1oBer | 1oBier |m 2025 | 21l | 218853 | 208383 | 2ofber | 218833 | 208167 [w 2025
6| cs Ba Hf Ta W [Re. | 0s Ir Pt Au Hg T Pb Bi Po At Rn
Catiun Barium Hafurs Tantahum Tungsten Rhenium Owmim | ldanr Gold Merenry Thalium Lexd Biamuth Eepm Asiatine Radon
30%333 |88 2725 |5 104 35 i f.ﬁﬁ-h_ 00 [wr 135|ws 00 |w 00 W00 u2 00 |u3 00 [00|us 00 [ue 00 |m 00 (ms 00
7 Fr Ra Rf Db e Bh. Hs e Rg Uub [Uut....| Uug Uup Uuh Uus Vo
— Radivm Rotherondiom || Sborgun | Bobeum e Matacaum Hosngenivm | Umebim | Unartium | Unossustion [Usimpestim | Unasherim | Ursnseptiom [Unanocti
— ST T T -6n, s
i 23f667 | 228533 | 2275 (.. 2275 | 25867 | 225833 228533 | 225.(o7 2225 |sn 2225 o0 2205 |m 2325 | 233
Symbol ta | ce | P | Na | B |sm Gi | To “Ho | Ere v
e Lanthanum Corium Praseodymium | Meadymivm | po Samarum | Gadobnium Terbum Helmium Erbum R [,
25867 | 228833 [0 22[e 21fs 21fw 21{s oo oofw ool 0ofei0 m 00 w00
Ac T Pa u Mp Pu Am | Cm Bk s Es Fom Lr
Actinium Tharium Protactinum Uranium Heptunium Plutanium Americium Curium Berkelium Califor nium Einsteinium Fermium w | dawrencium

1.3. Input parameters

17

PCMSolver

1.3.9 Available solvents

The macroscopic properties for the built-in list of solvents are:

* static permittivity, €

* optical permittivity, £

* probe radius, 7probe in Angstrom.

The following table summarizes the built-in solvents and their properties. Solvents are ordered by decreasing static

permittivity.

Name Formula £ foo Tprobe
Water H20 78.39 | 1.776 | 1.385
Propylene Carbonate | C4H603 64.96 | 2.019 | 1.385
Dimethylsulfoxide DMSO 46.7 | 2.179 | 2.455
Nitromethane CH3NO2 38.20 | 1.904 | 2.155
Acetonitrile CH3CN 36.64 | 1.806 | 2.155
Methanol CH30H 32.63 | 1.758 | 1.855
Ethanol CH3CH20H | 24.55 | 1.847 | 2.180
Acetone C2H6CO 20.7 1.841 | 2.38
1,2-Dichloroethane C2H4CI12 10.36 | 2.085 | 2.505
Methylenechloride CH2CI12 8.93 | 2.020 | 2.27
Tetrahydrofurane THF 7.58 1.971 | 29
Aniline C6HS5NH2 6.89 2.506 | 2.80
Chlorobenzene C6HS5Cl 5.621 | 2.320 | 2.805
Chloroform CHCI3 4.90 2.085 | 2.48
Toluene C6H5CH3 2.379 | 2.232 | 2.82
1,4-Dioxane C4H802 2.250 | 2.023 | 2.630
Benzene C6H6 2.247 | 2.244 | 2.630
Carbon tetrachloride | CCl4 2.228 | 2.129 | 2.685
Cyclohexane C6H12 2.023 | 2.028 | 2.815
N-heptane C7H16 1.92 1.918 | 3.125

1.4 Interfacing a QM program and PCMSolver

1.4.1 For the impatients: tl;dr

In these examples, we want to show how every function in the API works. If your program is written in Fortran, head
over to Interfacing with a Fortran host If your program is written in C/C++, head over to Interfacing with a C host

1.4.2 How PCMSolver handles potentials and charges: surface functions

Electrostatic potential vectors and the corresponding apparent surface charge vectors are handled internally as surface
functions. The actual values are stored into Eigen vectors and saved into a map. The mapping is between the name of
the surface function, given by the programmer writing the interface to the library, and the vector holding the values.

18 Chapter 1. PCMSolver Users’ Manual

PCMSolver

1.4.3 What you should care about: API functions

These are the contents of the pcmsolver.h file defining the public API of the PCMSolver library. The Fortran
bindings for the API are in the pcmsolver.£90 file. The indexing of symmetry operations and their mapping
to a bitstring is explained in the following Table. This is important when passing symmetry information to the
pcmsolver_new () function.

Table 1: Symmetry operations indexing within the module

Index | zyx | Generator | Parity
0 000 | E 1.0

1 001 | Oyz -1.0

2 010 | Oxz -1.0

3 011 | C2z 1.0

4 100 | Oxy -1.0

5 101 | C2y 1.0

6 110 | C2x 1.0

7 111 | i -1.0

C API to PCMSolver.
Author Roberto Di Remigio
Date 2015

Defines

PCMSolver_ EXPORT

pcmsolver_bool_t_ DEFINED

Typedefs

typedef bool pcmsolver_bool_t

typedef struct pcmsolver_context_s pcmsolver context_t
Workaround to have pcmsolver_context_t available to C

typedef void (*HostWriter) (const char *message)
Flushes module output to host program

Parameters

* [inout] message: contents of the module output

Enums

enum pcmsolver_ reader_t
Input processing strategies.
Values:

enumerator PCMSOLVER_ READER OWN
Module reads input on its own

enumerator PCMSOLVER_READER HOST
Module receives input from host

1.4. Interfacing a QM program and PCMSolver 19

PCMSolver

Functions

pcmsolver_context_t *pemsolver_new (pcmsolver_reader_t input_reading, int nr_nuclei, double chargesl[],

double coordinates[], int symmetry_info[], struet PCMInput
*host_input, HostWriter writer)
Creates a new PCM context object.

The molecular point group information is passed as an array of 4 integers: number of generators, first, second
and third generator respectively. Generators map to integers as in table :ref: symmetry-ops

Parameters
* [in] input_reading: input processing strategy
* [in] nr_nuclei: number of atoms in the molecule
* [in] charges: atomic charges
e [in] coordinates: atomic coordinates
* [in] symmetry_info: molecular point group information
* [in] host_input: input to the module, as read by the host

e [in] writer: flush-to-host function

pcemsolver_context_t *pemsolver _new_v1112 (pcmsolver_reader_t input_reading, int nr_nuclei, double

charges[], double coordinates[], int symmetry_info[],
const char *parsed_fname, struct PCMInput
*host_input, HostWriter writer)

Creates a new PCM context object, updated in v1.1.12.

The molecular point group information is passed as an array of 4 integers: number of generators, first, second
and third generator respectively. Generators map to integers as in table :ref: symmetry-ops

Parameters
* [in] input_reading: input processing strategy
e [in] nr_nuclei: number of atoms in the molecule
* [in] charges: atomic charges
e [in] coordinates: atomic coordinates
* [in] symmetry_info: molecular point group information
* [in] parsed_fname: name of the input file parsed by pcmsolver.py
* [in] host_input: input to the module, as read by the host

e [in] writer: flush-to-host function

pcemsolver_context_t *pecmsolver new_read_host (int nr_nuclei, double charges[], double coordi-

natesl[], int symmetry_infoll, HostWriter writer)
Creates a new PCM context object, with deferred input parsing from host.

The molecular point group information is passed as an array of 4 integers: number of generators, first, second
and third generator respectively. Generators map to integers as in table :ref: symmetry-ops

Note Added in v1.3.0
Parameters
e [in] nr_nuclei: number of atoms in the molecule

* [in] charges: atomic charges

20

Chapter 1. PCMSolver Users’ Manual

PCMSolver

e [in] coordinates: atomic coordinates
* [in] symmetry_info: molecular point group information
e [in] writer: flush-to-host function

void pemsolver_ set_bool_option (pcmsolver_context t *context, const char *parameter, pcm-

solver_bool_t value)
Set a bool option in PCMSolver input.

Warning You should call pcmsolver_refresh to finalize the context object.
Parameters

* [inout] context: the PCM context object

* [in] parameter: the name of the parameter to set

* [in] wvalue: the value of the parameter

void pcmsolver_set_int_option (pcmsolver_context_t *context, const char *parameter, int value)

Set an integer option in PCMSolver input.
Warning You should call pcmsolver_refresh to finalize the context object.
Parameters

* [inout] context: the PCM context object

* [in] parameter: the name of the parameter to set

e [in] wvalue: the value of the parameter

void pcmsolver_set_double_option (pcmsolver_context_t *context, const char *parameter, double

value)
Set a double option in PCMSolver input.

Warning You should call pcmsolver_refresh to finalize the context object.
Parameters

* [inout] context: the PCM context object

* [in] parameter: the name of the parameter to set

* [in] wvalue: the value of the parameter

void pcmsolver_set_string option (pcmsolver_context_t *context, const char *parameter, const

char *value)
Set a string option in PCMSolver input.

Warning You should call pcmsolver_refresh to finalize the context object.
Parameters

* [inout] context: the PCM context object

* [in] parameter: the name of the parameter to set

e [in] wvalue: the value of the parameter

void pcmsolver_ refresh (pcmsolver_context_t *context)
Refreshes the PCM context object.

1.4. Interfacing a QM program and PCMSolver

21

PCMSolver

Parameters
* [inout] context: the PCM context object
void pcmsolver_ delete (pcmsolver_context_t *context)
Deletes a PCM context object.
Parameters
* [inout] context: the PCM context object to be deleted
pcemsolver_bool_t pecmsolver_ is_compatible_ library (void)

Whether the library is compatible with the header file Checks that the compiled library and header file version
match. Host should abort when that is not the case.

Warning This function should be called before instantiating any PCM context objects.

void pemsolver_ print (pcmsolver_context_t *context)
Prints set up information.
Parameters
* [inout] context: the PCM context object
void pecmsolver_citation (HostWriter writer)
Print version information and citation for PCMSolver.
Parameters
e [in] writer: flush-to-host function
int pcmsolver_ get_cavity_size (pcmsolver_context_t *context)
Getter for the number of finite elements composing the molecular cavity.
Return the size of the cavity
Parameters
* [inout] context: the PCM context object
int pcmsolver_get_irreducible_cavity_ size (pcmsolver_context t *context)
Getter for the number of irreducible finite elements composing the molecular cavity.
Return the number of irreducible finite elements
Parameters
* [inout] context: the PCM context object
void pcmsolver_get_centers (pcmsolver_context_t *context, double centers|[])
Getter for the centers of the finite elements composing the molecular cavity.
Parameters
* [inout] context: the PCM context object

* [out] centers: array holding the coordinates of the finite elements centers

22 Chapter 1. PCMSolver Users’ Manual

PCMSolver

void pemsolver_get_center (pcmsolver_context_t *context, int its, double center[])
Getter for the center of the i-th finite element.
Parameters
* [inout] context: the PCM context object
e [in] its: index of the finite element
* [out] center: array holding the coordinates of the finite element center
void pecmsolver get_areas (pcmsolver_context_t *context, double areas(])
Getter for the areas/weights of the finite elements.
Parameters
* [inout] context: the PCM context object
* [out] areas: array holding the weights/areas of the finite elements

void pecmsolver_compute_asc (pcmsolver_context_t *context, const char *mep_name, const char

*asc_name, int irrep)
Computes ASC given a MEP and the desired irreducible representation.

Parameters
* [inout] context: the PCM context object
* [in] mep_name: label of the MEP surface function
e [in] asc_name: label of the ASC surface function

* [in] irrep: index of the desired irreducible representation The module uses the surface function
concept to handle potentials and charges. Given labels for each, this function retrieves the MEP and
computes the corresponding ASC.

void pcmsolver_ compute_response_asc (pcmsolver_contexl_t *context, const char *mep_name,

const char *asc_name, int irrep)
Computes response ASC given a MEP and the desired irreducible representation.

Parameters
* [inout] context: the PCM context object
* [in] mep_name: label of the MEP surface function
e [in] asc_name: label of the ASC surface function

* [in] irrep: index of the desired irreducible representation If Nonequilibrium = True in
the input, calculates a response ASC using the dynamic permittivity. Falls back to the solver with
static permittivity otherwise.

double pcmsolver_compute_polarization_energy (pcmsolver_context_t *context, const char

*mep_name, const char *asc_name)
Computes the polarization energy.

Return the polarization energy This function calculates the dot product of the given MEP and ASC vectors.
Parameters

* [inout] context: the PCM context object

1.4. Interfacing a QM program and PCMSolver 23

PCMSolver

e [in] mep_name: label of the MEP surface function
e [in] asc_name: label of the ASC surface function

double pcmsolver get_asc_dipole (pcmsolver_context_t *context, const char *asc_name, double

dipolel])
Getter for the ASC dipole.

Return the ASC dipole, i.e. \/)_, pi?

Parameters
* [inout] context: the PCM context object
* [in] asc_name: label of the ASC surface function
* [out] dipole: the Cartesian components of the ASC dipole moment

void pemsolver get_surface_function (pcmsolver_context_t *context, int size, double values[],

))) const char *name)
Retrieves data wrapped in a given surface function.

Parameters
* [inout] context: the PCM context object
e [in] size: the size of the surface function
* [in] wvalues: the values wrapped in the surface function
e [in] name: label of the surface function

void pecmsolver_set_surface_function (pcmsolver_context_t *context, int size, double values[],

o const char *name)
Sets a surface function given data and label.

Parameters
* [inout] context: the PCM context object
e [in] size: the size of the surface function
* [in] wvalues: the values to be wrapped in the surface function
e [in] name: label of the surface function
void pcmsolver_print_surface_function (pcmsolver_context_t *context, const char *name)
Prints surface function contents to host output.
Parameters
* [inout] context: the PCM context object
e [in] name: label of the surface function
void pcmsolver save_surface_functions (pcmsolver_context_t *context)
Dumps all currently saved surface functions to NumPy arrays in .npy files.
Parameters

* [inout] context: the PCM context object

24 Chapter 1. PCMSolver Users’ Manual

PCMSolver

void pemsolver_save_surface_function (pcmsolver_context_t *context, const char *name)
Dumps a surface function to NumPy array in .npy file.
Note The name parameter is the name of the NumPy array file without .npy extension
Parameters
* [inout] context: the PCM context object
e [in] name: label of the surface function
void pemsolver load_surface_function (pcmsolver_context t *context, const char *name)
Loads a surface function from a .npy file.
Note The name parameter is the name of the NumPy array file without .npy extension
Parameters
* [inout] context: the PCM context object
e [in] name: label of the surface function
void pecmsolver_write_timings (pcmsolver_context_t *context)
Writes timing results for the APIL.
Parameters

* [inout] context: the PCM context object

1.4.4 Host input forwarding
struct PCMInput
Data structure for host-API input communication.

Forward-declare PCMInput input wrapping struct

Public Members
char cavity_ type[8]
Type of cavity requested.

int patch_level
Wavelet cavity mesh patch level.

double coarsity
Wavelet cavity mesh coarsity.

double area
Average tesserae area.

char radii_set|8]
The built-in radii set to be used.

double min_distance
Minimal distance between sampling points.

int der order
Derivative order for the switching function.

1.4. Interfacing a QM program and PCMSolver 25

PCMSolver

pcemsolver_bool_t scaling
Whether to scale or not the atomic radii.

char restart_name[20]
Name of the .npz file for GePol cavity restart.

double min_radius
Minimal radius for the added spheres.

char solver_type[7]
Type of solver requested.

double correction
Correction in the CPCM apparent surface charge scaling factor.

char solvent[16]
Name of the solvent.

double probe_radius
Radius of the spherical probe mimicking the solvent.

char equation_type[l1]
Type of the integral equation to be used.

char inside_type[7]
Type of Green’s function requested inside the cavity.

double outside_epsilon
Value of the static permittivity outside the cavity.

char outside_type[22]
Type of Green’s function requested outside the cavity.

1.4.5 Internal details of the API

class pcm: :Meddle
Contains functions exposing an interface to the module internals.

Author Roberto Di Remigio
Date 2015-2017

Public Functions

Meddle (const Input &input, const HostWriter &writer)
CTOR from Input object.
Warning This CTOR is meant to be used with the standalone executable only
Parameters
* [in] input: an Input object
* [in] writer: the global HostWriter object

Meddle (const std::string &inputFileName, const HostWriter &writer)
CTOR from own input reader.

Warning This CTOR is meant to be used with the standalone executable only

26 Chapter 1. PCMSolver Users’ Manual

PCMSolver

Parameters

[in]

[in]

inputFileName: name of the parsed, machine-readable input file

writer: the global HostWriter object

Meddle (int nr_nuclei, double charges[], double coordinates[], int symmetry_info[], const HostWriter

&writer, const std::string &inputFileName)
CTOR from parsed input file name.

Parameters

[in]
[in]
[in]
[in]
[in]

[in]

inputFileName: name of the parsed, machine-readable input file
nr_nuclei: number of atoms in the molecule

charges: atomic charges

coordinates: atomic coordinates

symmetry_info: molecular point group information

writer: the global HostWriter object

Meddle (int nr_nuclei, double charges[], double coordinates|[], int symmetry_info[], const PCMInput

&host_input, const HostWriter &writer)
Constructor.

The molecular point group information is passed as an array of 4 integers: number of generators, first,
second and third generator respectively. Generators map to integers as in table :ref: symmetry-ops

Parameters

[in]
[in]
[in]
[in]
[in]

[in]

nr_nuclei: number of atoms in the molecule
charges: atomic charges

coordinates: atomic coordinates
symmetry_info: molecular point group information
host_input: input to the module, as read by the host

writer: the global HostWriter object

Meddle (int nr_nuclei, double charges[], double coordinates[], int symmetry_info[], const HostWriter

&writer)
Constructor.

The molecular point group information is passed as an array of 4 integers: number of generators, first,
second and third generator respectively. Generators map to integers as in table :ref: symmetry-ops

Parameters

[in]
[in]
[in]
[in]

[in]

nr_nuclei: number of atoms in the molecule
charges: atomic charges

coordinates: atomic coordinates
symmetry_info: molecular point group information

writer: the global HostWriter object

Molecule molecule () const
Getter for the molecule object.

1.4. Interfacing a QM program and PCMSolver 27

PCMSolver

PCMSolverIndex getCavitySize () const
Getter for the number of finite elements composing the molecular cavity.

Return the size of the cavity

PCMSolverIndex getIrreducibleCavitySize () const
Getter for the number of irreducible finite elements composing the molecular cavity.

Return the number of irreducible finite elements

void getCenters (double centers[]) const
Getter for the centers of the finite elements composing the molecular cavity.
Parameters
* [out] centers: array holding the coordinates of the finite elements centers
void getCenter (int ifs, double center[]) const
Getter for the center of the i-th finite element.
Parameters
e [in] its: index of the finite element
* [out] center: array holding the coordinates of the finite element center

Eigen::Matrix3Xd getCenters () const
Getter for the centers of the finite elements composing the molecular cavity.

Return a matrix with the finite elements centers (dimensions 3 x number of finite elements)

void getAreas (double areas[]) const
Getter for the areas/weights of the finite elements.
Parameters
* [out] areas: array holding the weights/areas of the finite elements
void computeASC (const std::string &mep_name, const std::string &asc_name, int irrep)
Computes ASC given a MEP and the desired irreducible representation.
Parameters
* [in] mep_name: label of the MEP surface function
e [in] asc_name: label of the ASC surface function

* [in] irrep: index of the desired irreducible representation The module uses the surface func-
tion concept to handle potentials and charges. Given labels for each, this function retrieves the
MEP and computes the corresponding ASC.

void computeResponseASC (const std::string &mep_name, const std::string &asc_name, int ir-

rep)
Computes response ASC given a MEP and the desired irreducible representation.

Parameters

e [in] mep_name: label of the MEP surface function

28 Chapter 1. PCMSolver Users’ Manual

PCMSolver

e [in] asc_name: label of the ASC surface function
* [in]

irrep: index of the desired irreducible representation If Nonequilibrium True

in the input, calculates a response ASC using the dynamic permittivity. Falls back to the solver
with static permittivity otherwise.

double computePolarizationEnergy (const std:string &mep_name, const

std::string
&asc_name) const

Computes the polarization energy.

Return the polarization energy This function calculates the dot product of the given MEP and ASC vec-
tors.

Parameters

* [in] mep_name: label of the MEP surface function

e [in] asc_name: label of the ASC surface function

double getASCDipole (const std::string &asc_name, double dipole[]) const
Getter for the ASC dipole.

Return the ASC dipole, i.e. /Y, u?
Parameters

e [in] asc_name: label of the ASC surface function

* [out] dipole: the Cartesian components of the ASC dipole moment

void getSurfaceFunction (PCMSolverIndex size, double values[], const std::string &name)

. . _const .
Retrieves data wrapped in a given surface function.

Parameters

e [in] size: the size of the surface function
* [in] wvalues: the values wrapped in the surface function

e [in] name: label of the surface function

void setSurfaceFunction (PCMSolverlndex size, double values[], const std::string &name)
Sets a surface function given data and label.

Parameters
* [in]

size: the size of the surface function

* [in] wvalues: the values to be wrapped in the surface function

e [in] name: label of the surface function

void printSurfaceFunction (const std::string &name) const
Prints surface function contents to host output.

Parameters

e [in] name: label of the surface function

1.4. Interfacing a QM program and PCMSolver 29

PCMSolver

void saveSurfaceFunctions () const
Dumps all currently saved surface functions to NumPy arrays in .npy files.

void saveSurfaceFunction (const std::string &name) const
Dumps a surface function to NumPy array in .npy file.
Note The name parameter is the name of the NumPy array file without .npy extension
Parameters
e [in] name: label of the surface function
void loadSurfaceFunction (const std::string &name)
Loads a surface function from a .npy file.
Note The name parameter is the name of the NumPy array file without .npy extension
Parameters
e [in] name: label of the surface function
void printInfo () const
Prints set up information.

std::string printCitation () const
Prints citation.

void writeTimings () const
Writes timing results for the API.

Private Functions
void CTORBody ()
Common implemenation for the CTOR-s

void initInput (int nr_nuclei, double charges[], double coordinates[], int symmetry_info[], bool de-
ferred_init = false)

Initialize input_.
Parameters
e [in] nr_nuclei: number of atoms in the molecule
* [in] charges: atomic charges
e [in] coordinates: atomic coordinates
* [in] symmetry_info: molecular point group information
e [in] deferred_init: whether to defer initialization of Molecule
void initCavity ()
Initialize cavity_

void initStaticSolver ()
Initialize static solver K_0_

void initDynamicSolver ()
Initialize dynamic solver K_d_

30 Chapter 1. PCMSolver Users’ Manual

PCMSolver

void initMMFQ ()
Initialize fluctuating charges solver FQ_

void mediumInfo (/GreensFunction *gf_i, IGreensFunction *gf_o)
Collect info on medium

void GaussCheck () const
Perform Gauss’ theorem check

Private Members

Printer hostWriter
Output redirect-or to host program output

Input input__
Input object

PCMInput host_input__
Host input struct

[Cavity *cavity__
Cavity

std::tuple<PCMSolverIndex, PCMSolverlndex> size_
Number of reducible and irreducible classical sites

ISolver *K_0_
Solver with static permittivity

ISolver *K_d__
Solver with dynamic permittivity

mmfq::FQOhno *FQ__
Fluctuating charges solver with Ohno kernel

bool hasDynamic_
Whether K_d_ was initialized

bool hasFQ
Whether FQ_ was initialized

std::ostringstream infoStream _
PCMSolver set up information

SurfaceFunctionMap functions_
SurfaceFunction map

struct Printer

class pcm::Input
A wrapper class for the Getkw Library C++ bindings.

An Input object is to be used as the unique point of access to user-provided input: input > parsed input (Python
script) > Input object (contains all the input data) Definition of input parameters is to be done in the Python script
and in this class. They must be specified as private data members with public accessor methods (get-ters). Most
of the data members are anyway accessed through the input wrapping struct-s In general, no mutator methods
(set-ters) should be needed, exceptions to this rule should be carefully considered.

Author Roberto Di Remigio
Date 2013

1.4. Interfacing a QM program and PCMSolver 31

PCMSolver

Public Functions
Input ()
Default constructor.

Input (const std::string &filename)
Constructor from human-readable input file name.

Input (const PCMInput &host_input)
Constructor from host input structs.

std::string units () const
Accessor methods.

Top-level section input

bool scaling () const
Cavity section input.

void molecule (const Molecule &m)
This method sets the molecule and the list of spheres.

Solvent solvent () const
Medium section input.

std::string providedBy () const
Keeps track of who did the parsing: the API or the host program.

CavityData cavityParams () const
Get-ters for input wrapping structs.

Private Functions

void reader (const PCMInput &host_input)

Read host data structures (host-side syntactic input parsing) into /nput object. It provides access to a
limited number of options only, basically the ones that can be filled into the cavitylnput, solverInput and
greenlnput data structures. Lengths and areas are expected to be in Angstrom/Angstrom”2 and will hence

be converted to au/au”2.

Note Specification of the solvent by name overrides any input given through the greenInput data structure!

Warning The cavity can only be built in the “Implicit” mode, i.e. by grabbing the coordinates for the
sphere centers from the host program. Atomic coordinates are expected to be in au! The “Atoms”
and “Explicit” methods are only available using the explicit parsing by our Python script of a separate

input file.

void semanticCheck ()
Perform semantic input parsing aka sanity check

32

Chapter 1. PCMSolver Users’ Manual

PCMSolver

Private Members
std::string units_
Units of measure.

int CODATAyear__

Year of the CODATA set to be used.
std::string cavityType_

The type of cavity.

std::string cavFilename_
Filename for the .npz cavity restart file.

double area__
GePol cavity average element area.

bool scaling_
Whether the radii should be scaled by 1.2.

std::string radiiSet_
The set of radii to be used.

std::string radiiSetName_
Collects info on atomic radii set.

double minimalRadius__
Minimal radius of an added sphere.

std::string mode__
How the API should get the coordinates of the sphere centers.

std::vector<int> atoms__
List of selected atoms with custom radii.

std::vector<double> radii__
List of radii attached to the selected atoms.

std::vector<Sphere> spheres__
List of spheres for fully custom cavity generation.

Molecule molecule_
Molecule or atomic aggregate.

Solvent solvent
The solvent for a vacuum/uniform dielectric run.

bool hasSolvent__
Whether the medium was initialized from a solvent object.

std::string solverType_
The solver type.

double correction_
Correction factor (C-PCM)

bool hermitivitize
Whether the PCM matrix should be hermitivitized (collocation solvers)

bool isDynamic_
Whether the dynamic PCM matrix should be used.

double probeRadius__
Solvent probe radius.

1.4. Interfacing a QM program and PCMSolver 33

PCMSolver

std::string integratorType_
Type of integrator for the diagonal of the boundary integral operators.

double integratorScaling

Scaling factor for the diagonal of the approximate collocation boundary integral operators

std::string greenInsideType_

The Green’s function type inside the cavity. It encodes the Green’s function type, derivative calculation

strategy and dielectric profile: TYPE_DERIVATIVE_PROFILE

std::string greenOutsideType__

The Green’s function type outside the cavity It encodes the Green’s function type, derivative calculation

strategy and dielectric profile: TYPE_DERIVATIVE_PROFILE

double epsilonInside_
Permittivity inside the cavity.

double epsilonStaticOutside_
Static permittivity outside the cavity.

double epsilonDynamicOutside_
Dynamic permittivity outside the cavity.

double epsilonStaticl_
Diffuse interface: static permittivity inside the interface.

double epsilonDynamicl_
Diffuse interface: dynamic permittivity inside the interface.

double epsilonStatic2_
Diffuse interface: static permittivity outside the interface.

double epsilonDynamic2_
Diffuse interface: dynamic permittivity outside the interface.

double center
Center of the diffuse interface.

double width__
Width of the diffuse interface.

int maxL
Maximum angular momentum.

std::vector<double> origin_
Center of the dielectric sphere.

std::vector<double> geometry__
Molecular geometry.

bool isFQ
Whether this is a FQ calculation.

bool isNonPolarizable
Whether this is a nonpolarizable MM calculation.

bool MEPfromMolecule
Whether to calculate the MEP from the molecular geometry.

bool MEPfromChargeDist__
Whether to calculate the MEP from the charge distribution.

ChargeDistribution multipoles_
Classical charge distribution of point multipoles.

34

Chapter 1

. PCMSolver Users’ Manual

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

PCMSolver

MMFQ fragments_
Classical fluctuating charges MM force field.

std::string providedBy_
Who performed the syntactic input parsing.

Friends

friend std::ostream &operator<< (std::ostream &os, const Input &input)
Operators operator<<

1.5 Interfacing with a Fortran host

! PCMSolver, an API for the Polarizable Continuum Model
! Copyright (C) 2020 Roberto Di Remigio, Luca Frediani and contributors.

! This file is part of PCMSolver.

! PCMSolver is free software: you can redistribute it and/or modify

! it under the terms of the GNU Lesser General Public License as published by
! the Free Software Foundation, either version 3 of the License, or

! (at your option) any later version.

! PCMSolver is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU Lesser General Public License for more details.

! You should have received a copy of the GNU Lesser General Public License
! along with PCMSolver. If not, see <http://www.gnu.org/licenses/>.

! For information on the complete 1list of contributors to the
! PCMSolver API, see: <http://pcmsolver.readthedocs.io/>

program pcm_fortran_host

use, intrinsic :: iso_c_binding

use, intrinsic :: iso_fortran_env, only: output_unit, error_unit
use pcmsolver

use utilities

use testing

implicit none

type (c_ptr) :: pcm_context

integer (c_int) nr_nuclei

real (c_double), allocatable :: charges(:)
real (c_double), allocatable :: coordinates(:)
integer (c_int) symmetry_info (4)

type (PCMInput) :: host_input

logical :: log_open, log_exist

character (kind=c_char, len=x), parameter :: mep_lbl = 'NucMEP'
character (kind=c_char, len=«x), parameter :: asc_lbl = 'NucASC'

(continues on next page)

1.5. Interfacing with a Fortran host

35

43
44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

82

83

85

86

88

89

90

91

92

93

94

95

96

97

PCMSolver

(continued from previous page)

character (kind=c_char, len=x), parameter :: asc_B3g_lbl = 'OITASC'
character (kind=c_char, len=x), parameter :: asc_neqg B3g_lbl = 'ASCB3g'
real (c_double), allocatable :: grid(:), mep(:), asc_Ag(:), asc_B3g(:), asc_neq_
—~B3g(:), areas(:)
integer (c_int) :: grid_size, irr_grid_size
real (c_double) :: energy
! Reference values for scalar quantities
integer (c_int), parameter :: ref_size = 576, ref_irr_size = 72
real (c_double), parameter :: ref_energy = -0.437960027982
if (.not. pcmsolver_is_compatible_library()) then
write (error_unit, *) 'PCMSolver library not compatible!'
stop
end if

! Open a file for the output...
inquire (file='Fortran_ host.out', opened=log_open, &
exist=log_exist)
if (log_exist) then
open (unit=output_unit, &
file='Fortran_host.out', &
status='unknown', &
form="'formatted', &
access='"sequential')
close (unit=output_unit, status='delete')
end if
open (unit=output_unit, &
file='Fortran_host.out', &
status='new', &
form='formatted', &
access='"sequential')
rewind (output_unit)
write (output_unit, *) 'Starting a PCMSolver calculation'
call pcmsolver_citation(c_funloc (host_writer))

nr_nuclei = 6_c_int
allocate (charges (nr_nuclei))

allocate (coordinates (3*nr_nuclei))

! Use C2H4 in D2h symmetry

charges = (/6.0_c_double, 1.0_c_double, 1.0_c_double, &
6.0_c_double, 1.0_c_double, 1.0_c_double/)
coordinates = (/0.0_c_double, 0.0_c_double, 1.257892_c_double, &

0.0_c_double, 1.745462_c_double, 2.342716_c_double, &
.0_c_double, —-1.745462_c_double, 2.342716_c_double, &
.0_c_double, 0.0_c_double, -1.257892_c_double, &

.0_c_double, 1.745462_c_double, -2.342716_c_double, &
.0_c_double, -1.745462_c_double, -2.342716_c_double/)

O O O O

! This means the molecular point group has three generators:
! the Oxy, Oxz and Oyz planes
symmetry_info = (/3, 4, 2, 1/)

host_input = pcmsolver_fill_pcminput (area=.2d0, scaling=.true., solver_type='iefpcm
— ', solvent='water")

pcm_context = pcmsolver_new (PCMSOLVER_READER_HOST, &

(continues on next page)

36 Chapter 1. PCMSolver Users’ Manual

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

PCMSolver

(continued from previous page)

nr_nuclei, charges, coordinates, &
symmetry_info, host_input, &
c_funloc (host_writer))

call pcmsolver_print (pcm_context)

grid_size = pcmsolver_get_cavity_size (pcm_context)

irr_grid_size = pcmsolver_get_irreducible_cavity_size (pcm_context)
allocate (grid(3+grid_size))

grid = 0.0_c_double

call pcmsolver_get_centers (pcm_context, grid)

allocate (areas(grid_size))

call pcmsolver_get_areas (pcm_context, areas)

allocate (mep(grid_size))
mep = 0.0_c_double
mep = nuclear_mep (nr_nuclei, charges, reshape (coordinates, (/3_c_int, nr_nuclei/)),
&
grid_size, reshape(grid, (/3_c_int, grid_size/)))
call pcmsolver_set_surface_function (pcm_context, grid_size, mep, mep_1lbl)
! This is the Ag irreducible representation (totally symmetric)
call pcmsolver_compute_asc (pcm_context, &
mep_1lbl, &
asc_1lbl, &
irrep=0_c_int)
allocate (asc_Ag(grid_size))
asc_Ag = 0.0_c_double
call pcmsolver_get_surface_function (pcm_context, grid_size, asc_Ag, asc_lbl)

energy = pcmsolver_compute_polarization_energy (pcm_context, &
mep_1bl, &
asc_1bl)

write (output_unit, '(A, F20.12)") 'Polarization energy = ', energy

allocate (asc_neqg B3g(grid_size))
asc_neq_B3g = 0.0_c_double
! This is the B3g irreducible representation
call pcmsolver_compute_response_asc (pcm_context, &
mep_lbl, &
asc_neq_B3g_1bl, &
irrep=3_c_int)
call pcmsolver_get_surface_function (pcm_context, grid_size, asc_neqg _B3g, asc_neq_
—B3g_1bl)

! Equilibrium ASC in B3g symmetry.
! This is an internal check: the relevant segment of the vector
! should be the same as the one calculated using pcmsolver_compute_response_asc
allocate (asc_B3g(grid_size))
asc_B3g = 0.0_c_double
! This is the B3g irreducible representation
call pcmsolver_compute_asc (pcm_context, &
mep_1lbl, &
asc_B3g_1bl, &
irrep=3_c_int)
call pcmsolver_get_surface_function (pcm_context, grid_size, asc_B3g, asc_B3g_1lbl)

(continues on next page)

1.5. Interfacing with a Fortran host 37

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

PCMSolver

(continued from previous page)

! Check that everything calculated is OK
! Cavity size
if (grid_size .ne. ref_size) then
write (error_unit, *) 'Error in the cavity size, please file an issue on: https://
—github.com/PCMSolver/pcmsolver'
stop
else
write (output_unit, x) 'Test on cavity size: PASSED'
end if
! Irreducible cavity size
if (irr_grid_size .ne. ref_irr_ size) then
write (error_unit, x) 'Error in the irreducible cavity size, please file an issue_
—on: https://github.com/PCMSolver/pcmsolver'
stop
else
write (output_unit, *) 'Test on irreducible cavity size: PASSED'
end if
! Polarization energy
if (.not. check_unsigned_error (energy, ref_enerqgy, 1.0e-7_c_double)) then
write (error_unit,) 'Error in the polarization energy, please file an issue on:
—https://github.com/PCMSolver/pcmsolver!
stop
else
write (output_unit, x) 'Test on polarization energy: PASSED'
end if
! Surface functions
call test_surface_functions(grid_size, mep, asc_Ag, asc_B3g, asc_neqg B3g, areas)

call pcmsolver_save_surface_function (pcm_context, mep_1lbl)
call pcmsolver_load_surface_function (pcm_context, mep_1lbl)

call pcmsolver_write_timings (pcm_context)
call pcmsolver_delete (pcm_context)

deallocate (charges)
deallocate (coordinates)
deallocate (grid)
deallocate (mep)
deallocate (asc_Ag)
deallocate (asc_B3q)
deallocate (asc_neqg_B3qg)
deallocate (areas)

close (output_unit)

end program pcm_fortran_host

38 Chapter 1. PCMSolver Users’ Manual

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

PCMSolver

1.6 Interfacing with a C host

Warning: Multidimensional arrays are handled in column-major ordering (i.e. Fortran ordering) by the module.

* PCMSolver, an API for the Polarizable Continuum Model
* Copyright (C) 2016 Roberto Di Remigio, Luca Frediani and collaborators.

* This file is part of PCMSolver.

* PCMSolver is free software: you can redistribute it and/or modify

* 1t under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

* PCMSolver 1is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.

* You should have received a copy of the GNU Lesser General Public License
* along with PCMSolver. If not, see <http://www.gnu.org/licenses/>.

* For information on the complete 1list of contributors to the
+ PCMSolver API, see: <http://pcmsolver.readthedocs.io/>
*/

#include <stddef.h>
#include <stdio.h>

#include <stdlib.h>
#include <string.h>

#include "PCMInput.h"
#include "pcmsolver.h"

#include "C_host—functions.h"
#define NR_NUCLEI 6
FILE » output;
void host_writer (const char * message) { fprintf (output, "%s\n", message); }
int main () {
output = fopen("C_host.out", "w+");
if (!pcmsolver_is_compatible_library()) {

fprintf (stderr, "%s\n", "PCMSolver library not compatible");
exit (EXIT_FAILURE) ;

fprintf (output, "%s\n", "Starting a PCMSolver calculation");
// Use C2H4 in D2h symmetry

double charges[NR_NUCLEI] = {6.0, 1.0, 1.0, 6.0, 1.0, 1.0};
double coordinates[3 % NR_NUCLEI] = {0.0,

(continues on next page)

1.6. Interfacing with a C host

39

52

53

54

55

56

57

58

59

60

61

62

63

64

66

67

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

PCMSolver

(continued from previous page)

.000000,
.257892,
.0,
.745462,
.342716,
.0,
-1.745462,
2.342716,
0.0,
0.000000,
-1.257892,
0.0,
1.745462,
-2.342716,
0.0,
-1.745462,
-2.342716};
// This means the molecular point group has three generators:
// the Oxy, Oxz and Oyz planes
int symmetry_infol4] = {3, 4, 2, 1};
struct PCMInput host_input = pcmsolver_input () ;

oON B OB O

pcmsolver_context_t x pcm_context = pcmsolver_new (PCMSOLVER_READER_HOST,

NR_NUCLET,
charges,
coordinates,
symmetry_info,
&host_input,
host_writer);

pcmsolver_citation (host_writer);
pcmsolver_print (pcm_context);

int grid_size = pcmsolver_get_cavity_size (pcm_context);

int irr_grid_size = pcmsolver_get_irreducible_cavity_size (pcm_context) ;
double x grid = (double «)calloc(3 % grid_size, sizeof (double));
pcmsolver_get_centers (pcm_context, grid);

double * areas = (double *)calloc(grid_size, sizeof (double));

pcmsolver_get_areas (pcm_context, areas);

double * mep = nuclear_mep (NR_NUCLEI, charges, coordinates, grid_size,

const char » mep_1lbl = {"NucMEP"};

pcmsolver_set_surface_function (pcm_context, grid_size, mep, mep_1bl);

const char * asc_1lbl = {"NucASC"};
// This 1is the Ag irreducible representation (totally symmetric)

int irrep = 0O;
pcmsolver_compute_asc (pcm_context, mep_lbl, asc_lbl, irrep);
double » asc_Ag = (double «*)calloc(grid_size, sizeof (double));

grid);

pcmsolver_get_surface_function (pcm_context, grid_size, asc_Ag, asc_1bl);

double energy =

pcmsolver_compute_polarization_energy (pcm_context, mep_lbl, asc_1bl);

fprintf (output, "Polarization energy: %20.12f\n", energy);

double * asc_neq B3g = (double x)calloc(grid_size, sizeof (double));

(continues on next page)

40 Chapter 1. PCMSolver Users’ Manual

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PCMSolver

(continued from previous page)

const char * asc_neq B3g_lbl = {"OITASC"};
// This is the B3g irreducible representation
irrep = 3;
pcmsolver_compute_response_asc (pcm_context, mep_1lbl, asc_neq B3g_lbl, irrep);
pcmsolver_get_surface_function (
pcm_context, grid_size, asc_neq_B3g, asc_neq B3g_1lbl);

// Equilibrium ASC in B3g symmetry.

// This 1is an internal check: the relevant segment of the vector

// should be the same as the one calculated using pcmsolver._compute_response_asc
double * asc_B3g = (double x)calloc(grid_size, sizeof (double));

const char » asc_B3g_1lbl = {"ASCB3g"};

pcmsolver_compute_asc (pcm_context, mep_1lbl, asc_B3g_lbl, irrep);
pcmsolver_get_surface_function (pcm_context, grid_size, asc_B3g, asc_B3g_lbl);

// Check that everything calculated is OK
// Cavity size

const int ref_size = 576;
if (grid_size != ref_size) {
fprintf (stderr,
H%S\nll,

"Error in the cavity size, please file an issue on: "
"https://github.com/PCMSolver/pcmsolver");
exit (EXIT_FAILURE) ;
} else {
fprintf (output, "%s\n", "Test on cavity size: PASSED");
}

// Irreducible cavity size

const int ref_irr_size = 72;
if (irr_grid_size != ref_irr_ size) {
fprintf (stderr,
"$s\n",

"Error in the irreducible cavity size, please file an "
"issue on: https://github.com/PCMSolver/pcmsolver");
exit (EXIT_FAILURE) ;
} else {
fprintf (output, "%s\n", "Test on irreducible cavity size: PASSED");
}
// Polarization enerqgy
const double ref_energy = -0.437960027982;
if (!check_unsigned_error (energy, ref_energy, 1.0e-7)) {
fprintf (stderr,
"$s\n",
"Error in the polarization energy, please file an issue "
"on: https://github.com/PCMSolver/pcmsolver");
exit (EXIT_FAILURE) ;
} else {
fprintf (output, "%s\n", "Test on polarization energy: PASSED");
}
// Surface functions
test_surface_functions (
output, grid_size, mep, asc_Ag, asc_B3g, asc_neq_B3g, areas);

pcmsolver_save_surface_functions (pcm_context);
pcmsolver_save_surface_function (pcm_context, asc_1lbl);
pcmsolver_load_surface_function (pcm_context, mep_1lbl);

(continues on next page)

1.6. Interfacing with a C host 41

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

PCMSolver

(continued from previous page)

pcmsolver_write_timings (pcm_context);
pcmsolver_delete (pcm_context) ;

free(grid);

free (mep) ;
free(asc_Aqg);

free (asc_B3qg);
free (asc_neq_B39g);
free (areas);

fclose (output) ;

return EXIT_SUCCESS;

42

Chapter 1. PCMSolver Users’ Manual

CHAPTER
TWO

PUBLICATIONS

2.1 Peer-reviewed journal articles

2.1.1 2015
» Four-Component Relativistic Calculations in Solution with the Polarizable Continuum Model of Solvation:
Theory, Implementation, and Application to the Group 16 Dihydrides H2X (X = O, S, Se, Te, Po)

* Wavelet Formulation of the Polarizable Continuum Model. II. Use of Piecewise Bilinear Boundary Elements

2.1.2 2016

* A Polarizable Continuum Model for Molecules at Spherical Diffuse Interfaces

2.1.3 2017
» Four-Component Relativistic Density Functional Theory with the Polarizable Continuum Model: Application
to EPR Parameters and Paramagnetic NMR Shifts

* Open-ended formulation of self-consistent field response theory with the polarizable continuum model for sol-
vation

e Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and
Interoperability

* Combining frozen-density embedding with the conductor-like screening model using Lagrangian techniques for
response properties

2.2 Theses

* The Polarizable Continuum Model Goes Viral! Extensible, Modular and Sustainable Development of Quantum
Mechanical Continuum Solvation Models Doctoral thesis, Roberto Di Remigio, January 2017.

43

http://pubs.acs.org/doi/abs/10.1021/jp507279y
http://pubs.acs.org/doi/abs/10.1021/jp507279y
http://pubs.rsc.org/en/content/articlelanding/2015/cp/c5cp03410h
http://dx.doi.org/10.1063/1.4943782
http://dx.doi.org/10.1080/00268976.2016.1239846
http://dx.doi.org/10.1080/00268976.2016.1239846
https://doi.org/10.1039/C6CP06814F
https://doi.org/10.1039/C6CP06814F
https://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00174
https://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00174
http://onlinelibrary.wiley.com/doi/10.1002/jcc.24813/abstract
http://onlinelibrary.wiley.com/doi/10.1002/jcc.24813/abstract
https://munin.uit.no/handle/10037/10786
https://munin.uit.no/handle/10037/10786

PCMSolver

2.3 Presentations

* A modular implementation of the Polarizable Continuum Model for Solvation Presentation given by Roberto Di
Remigio at the workshop in honour of professor Jacopo Tomasi’s 80th birthday. Pisa, August 31 - September 1
2014.

e The Polarizable Continuum Model Goes Viral! PhD defense, Roberto Di Remigio, January 16 2017.

* PCMSolver: a modern, modular approach to include solvation in any quantum chemistry code. Presentation
given by Luca Frediani at WATOC 2017. Munich, August 27 - September 1 2017.

2.4 Posters

* Plug the solvent in your favorite QM program Presented by Luca Frediani at the 14th International Congress of
Quantum Chemistry. Boulder, Colorado, June 25-30 2012.

¢ 4-Component Relativistic Calculations in Solution with the Polarizable Continuum Model of Solvation Pre-
sented by Roberto Di Remigio at the FemEx-Oslo conference. Oslo, June 13-16 2014.

44 Chapter 2. Publications

https://www.dropbox.com/s/uzzv8c0wx8eswbc/talk_pisa.pdf?dl=0
http://tinyurl.com/phd-forsvaring
https://www.dropbox.com/s/gmj6l54mdj6r9z7/posterICQC.pdf?dl=0
https://www.dropbox.com/s/edvrimiwh5rlg9y/posterFemEx.pdf?dl=0

CHAPTER
THREE

PCMSOLVER PROGRAMMERS’ MANUAL

3.1 General Structure

Interface

!

» Solver -

GetEkw —» Cavity Green +———Taylor
Eigen Boost

External libraries:

* parts of the C++ Boost libraries are used to provide various functionality, like ordinary differential equations
integrators. The source for the 1.54.0 release is shipped with the module’s source code. Some of the libraries
used need to be compiled. Boost is released under the terms of the Boost Software License, v1.0 (see also
http://www.boost.org/users/license.html)

Warning: As of v1.1.11 we have started removing the dependency from Boost. The use of Boost is thus
deprecated.

* the Eigen template library for linear algebra. Almost every operation involving matrices and vectors is performed
through Eigen. Eigen provides convenient type definitions for vectors and matrices (of arbitrary dimensions)
and the corresponding operations. Have a look here for a quick reference guide to the API and at the getting
started guide to get started. Eigen is distributed under the terms of the Mozilla Public License, v2.0

45

http://www.boost.org/
http://opensource.org/licenses/BSL-1.0
http://www.boost.org/users/license.html
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/dox/group__QuickRefPage.html
http://eigen.tuxfamily.org/dox/GettingStarted.html
http://eigen.tuxfamily.org/dox/GettingStarted.html
http://opensource.org/licenses/MPL-2.0

PCMSolver

¢ the Getkw library by Jonas Juselius is used to manage input. It is distributed under the terms of the GNU General
Public License, v2.0

* the libtaylor library implementing automatic differentiation and available under the terms of the MIT License.
Third-party code snippets:

* Fortran subroutines dsyevv3, dsyevh3, dsyevj3 for the diagonalization of 3x3 Hermitian matrices. These sub-
routines were copied verbatim from the source code provided by Joachim Kopp and described in [KopO8] (also
available on the arXiv) The diagonalization subroutines are made available under the terms of the GNU Lesser
General Public License, v2.1

e C++ cnpy library for saving arrays in C++ into Numpy arrays. The library is from Carl Rogers under the terms
of the MIT License. The version in PCMSolver is slightly different.

3.2 Coding standards

General Object-Oriented design principles you should try to follow:

—_—

. Identify the aspects of your application that vary and separate them from what stays the same;
2. Program to an interface, not an implementation;
3. Favor composition over inheritance;
4. Strive for loosely coupled designs between objects that interact;
5. Classes should be open for extension, but closed for modification;
6. Depend upon abstractions. Do not depend upon concrete classes;
7. Principle of Least Knowledge. Talk only to your immediate friends;
[SA04][CGLI8][Cli]

3.2.1 Including header files

Do not include header files unnecessarily. Even if PCMSolver is not a big project, unnecessary include directives
and/or forward declarations introduce nasty interdependencies among different parts of the code. This reflects mainly
in longer compilation times, but also in uglier looking code (see also the discussion in [Sut99]).

Follow these guidelines to decide whether to include or forward declare:
1. class A makes no reference to class B. Neither include nor forward declare B;
2. class A refers to class B as a friend. Neither include nor forward declare B;
3. class A contains a pointer/reference to a class B object. Forward declare B;
4

. class A contains functions with a class B object (value/pointer/reference) as parameter/return value. For-
ward declare B;

5. class A is derived from class B. include B;

6. class A contains a class B object. include B.

#pragma once

// Forward declared dependencies
class Foo;

(continues on next page)

46 Chapter 3. PCMSolver Programmers’ Manual

https://github.com/juselius/libgetkw
http://opensource.org/licenses/GPL-2.0
http://opensource.org/licenses/GPL-2.0
https://github.com/uekstrom/libtaylor
(http://opensource.org/licenses/MIT
http://www.mpi-hd.mpg.de/personalhomes/globes/3x3/
http://arxiv.org/abs/physics/0610206
http://opensource.org/licenses/LGPL-2.1
http://opensource.org/licenses/LGPL-2.1
https://github.com/rogersce/cnpy
(http://opensource.org/licenses/MIT

PCMSolver

(continued from previous page)

class Bar;

// Included dependencies
#include <vector>
#include "Parent.hpp"

// The actual class
class MyClass : public Parent // Parent object, so #include "Parent.h"
{

public:
std::vector<int> avector; // vector object, so #include <vector>
Foo * fooj; // Foo pointer, so forward declare
void Func (Bar & bar); // Bar reference as parameter, so forward declare
friend class MyFriend; // friend declaration is not a dependency

// don't do anything about MyFriend
bi

3.2.2 Proper overloading of operator<<

Suppose we have an inheritance hierarchy made of an abstract base class, Base, and two derived classes, Derived1 and
Derived2. In the Base class header file we will define a pure virtual private function printObject and provide a public
friend overload of operator<<:

#include <iosfwd>

class Base
{
public:
// All your other very fancy public members
friend std::ostream & operator<<(std::ostream & os, Base & base)
{
return base.printObject (os);
}
protected:
// All your other very fancy protected members
private:
// All your other very fancy private members
virtual std::ostream & printObject (std::ostream & os) = 0;

The printObject method can also be made (impure) virtual, it really depends on your class hierarchy. Derivedl and
Derived2 header files will provide a public friend overload of operator<< (friendliness isn’t inherited, transitive or
reciprocal) and an override for the printObject method:

#include <iosfwd>
#include "Base.hpp"

class Derivedl : public Base

{
public:
// All your other very fancy public members

(continues on next page)

3.2. Coding standards 47

PCMSolver

(continued from previous page)

friend std::ostream & operator<<(std::ostream & os, Derivedl & derived)
{
return derived.printObject (os);
}
protected:
// All your other very fancy protected members
private:
// All your other very fancy private members
virtual std::ostream & printObject (std::ostream & os);

class Derived2 : public Base
{
public:
// All your other very fancy public members
friend std::ostream & operator<<(std::ostream & os, Derived2 & derived)
{
return derived.printObject (os);
}
protected:
// All your other very fancy protected members
private:
// All your other very fancy private members
virtual std::ostream & printObject (std::ostream & o0s);

3.2.3 Code formatting

We conform to the so-called Linux (aka kernel) formatting style for C/C++ code (see http://en.wikipedia.org/wiki/
Indent_style#Kernel_style) with minimal modifications. Using clang-format is the preferred method to get the source
code in the right format. Formatting style is defined in the . clang—-format file, kept at the root of the project.

Note: We recommend using at least v3.9 of the program, which is the version used to generate the . clang-format
file defining all formatting settings.

clang-format can be integrated with both Emacs and Vim. It is also possible to install the Git pre-commit hooks
to perform the necessary code style checks prior to committing changes:

cd .git/hooks
cp —-symbolic-link ../../.githooks/*

3.3 Documentation

This documentation is generated using Sphinx and Doxygen The two softwares are bridged by means of the Breathe
extension The online version of this documentation is built and served by Read The Docs. The webpage http://
pcmsolver.readthedocs.org/ is updated on each push to the public GitHub repository.

48 Chapter 3. PCMSolver Programmers’ Manual

http://en.wikipedia.org/wiki/Indent_style#Kernel_style
http://en.wikipedia.org/wiki/Indent_style#Kernel_style
https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/docs/ClangFormat.html#vim-integration
http://sphinx-doc.org/
http://www.stack.nl/~dimitri/doxygen/
https://breathe.readthedocs.org/
https://breathe.readthedocs.org/
https://readthedocs.org/
http://pcmsolver.readthedocs.org/
http://pcmsolver.readthedocs.org/

PCMSolver

3.3.1 How and what to document

Doxygen enables documenting the code in the source code files thus removing a “barrier” for developers. To avoid
that the code degenerates into a Big Ball of Mud, it is mandatory to document directly within the source code classes
and functions. To document general programming principles, design choices, maintenance etc. you can create a .rst
file in the doc directory. Remember to refer the new file inside the index . rst file (it won’t be parsed otherwise).
Sphing uses reStructuredText and Markdown. Support for Markdown is not as extensive as for reStructuredText, see
these comments. Follow the guidelines in [WAB+14] regarding what to document.

Write the documentation in the header file. To document a class, put /! \class <myclass> inside the names-
pace but before the class. Add the following to a . rst file:

. doxygenclass:: <namespace>::<myclass>
:project: PCMSolver

:members:

:protected-members:

:private—-members:

Do similar when documenting st ruct-s and complete files.

Note: Use /x! «/ toopen and close a Doxygen comment.

3.3.2 Documenting methods in derived classes

Virtual methods should only be documented in the base classes. This avoids unnecessary verbosity and conforms to
the principle: “Document _what_, not _how_" [WAB+14] If you feel the _how_ needs to be explicitly documented,
add some notes in the appropriate . rst file.

3.3.3 How does this work?

To have an offline version of the documentation just issue in the doc folder:

sphinx-build . _build

The HTML will be stored in _build/. Openthe _build/index.html file with your browser to see and browse
the documentation.

Warning: It is only possible to build documentation locally from within the doc folder. This choice was made to
simplify the set up of the ReadTheDocs and local documentation building procedures and to minimize the chances
of breaking either.

Note: Building the documentation requires Python, Doxygen, Sphinx, Perl and the Python modules breathe, mat-
plotlib, sphinx-rtd-theme, sphinxcontrib-bibtex and recommonmark. The required python modules can be installed
by running pip install -r requirements.txt. There is also a Pipfile in case people prefer to use
pipenv.

3.3. Documentation 49

http://docutils.sourceforge.net/rst.html
https://daringfireball.net/projects/markdown/
https://blog.readthedocs.com/adding-markdown-support/

PCMSolver

3.4 CMake usage

This is a brief guide to our CMake infrastructure which is managed via Autocmake

Warning: The minimum required CMake version is 2.8.10

3.4.1 Adding new source subdirectories and/or files

Developers HAVE TO manually list the sources in a given subdirectory of the main source directory src/. In our
previous infrastructure this was not necessary, but the developers needed to trigger CMake to regenerate the Makefiles
manually.

New subdirectory

First of all, you will have to let CMake know that a new source-containing subdirectory has been added to the source
tree. Due to the hierarchical approach CMake is based upon you will need to modify the CMakeLists.txt in the
src directory and create a new one in your new subdirectory. For the first step:

1. if your new subdirectory contains header files, add a line like the following to the CMakeLists.txt
file contained in the src directory:

CMAKE_CURRENT_LIST_DIR}/subdir_name

to the command setting the list of directories containing headers. This sets up the list of directories where
CMake will look for headers with definitions of classes and functions. If your directory contains Fortran
code you can skip this step;

2. add a line like the following to the CMakeLists. txt file contained in the src directory:

add_subdirectory (subdir_name)

This will tell CMake to go look inside subdir_name for a CMakeLists.txt containing more sets
of instructions. It is preferable to add these new lines in alphabetic order

Inside your new subdirectory you will need to add a CMakeLists.txt file containing the set of instructions to
build your cutting edge code. This is the second step. Run the make_cmake_files.py Python scriptinthe src/
directory:

python make_cmake_files.py —--libname=cavity --lang=CXX

to generate a template CMakeLists.txt.try file:

List of headers
list (APPEND headers_list Cavity.hpp ICavity.hpp Element.hpp GePolCavity.hpp,,
—RegisterCavityToFactory.hpp RestartCavity.hpp)

List of sources
1list (APPEND sources_list ICavity.cpp Element.cpp GePolCavity.cpp RestartCavity.cpp)

add_library (cavity OBJECT ${sources_list} ${headers_list})
set_target_properties (cavity PROPERTIES POSITION_INDEPENDENT_CODE 1)
set_property (GLOBAL APPEND PROPERTY PCMSolver_ HEADER_DIRS ${CMAKE_CURRENT_LIST_DIR})

Sets install directory for all the headers in the 1list

(continues on next page)

50 Chapter 3. PCMSolver Programmers’ Manual

http://autocmake.readthedocs.org/en/latest/

PCMSolver

(continued from previous page)

foreach (_header ${heac 5_1list})
install (FILES ${_he

endforeach ()

>r} DESTINATION include/cavity)

The template might need additional editing. Each source subdirectory is the lowest possible in the CMake hierarchy
and it contains set of instructions for:

1. exporting a list of header files (.h or .hpp) to the upper level in the hierarchy, possibly excluding some of them
2. define install targets for the files in this subdirectory.

All the source files are compiled into the unique static library 1ibpcm. a and unique dynamic library 1ibpcm. so.
This library is the one the host QM program need to link.

Searching for libraries

In general, the use of the find_package macro is to be preferred, as it is standardized and ensured to work on any
platform. Use of find_package requires that the package/library you want to use has already a module inside the
CMake distribution. If that’s not the case, you should never use the following construct for third-party libraries:

target_link_libraries (myexe —lsomesystemlib)

If the library does not exist, the end result is a cryptic linker error. See also Jussi Pakkanen’s blog You will first need
to find the library, using the macro find_library, and then use the target_link_libraries command.

3.5 Versioning and minting a new release

Our versioning machinery is based on a modified version of the versioner.py script devised by Lori A. Burns
(Georgia Tech) for the Psi4 quantum chemistry code. The documentation that follows is also adapted from the corre-
sponding Psi4 documentation, available at this link

This guide will walk you through the actions to perform to mint a new release of the code. Version numbering
follows the guidelines of semantic versioning. The allowed format is MAJOR . MINOR.PATCH-DESCRIBE, where
DESCRIBE can be a string describing a prerelease state, such as rc2, alphal, beta3 and so forth.

3.5.1 Minting a new release

The tools/metadata.py file records the versioning information for the current release. The information in this
file is used by the versioner.py script to compute a unigue version number for development snapshots.

Note: To correctly mint a new release, you will have to be on the latest release branch of (i) a direct clone or (ii)
clone-of-fork with release branch up-to-date with upstream (including tags!!!) and with upstream as remote.

This is the step-by-step guide to releasing a new version of PCMSolver:
1. DECIDE an upcoming version number, say 1.2.0.
2. TIDY UP CHANGELOG .md:

¢ SET the topmost header to the upcoming version number and release date.

[Version 1.2.0] - 2018-03-31

3.5. Versioning and minting a new release 51

http://www.cmake.org/cmake/help/v3.0/command/find_package.html
http://voices.canonical.com/jussi.pakkanen/2013/03/26/a-list-of-common-cmake-antipatterns/
http://www.cmake.org/cmake/help/v3.0/command/find_library.html
http://www.psicode.org
http://www.psicode.org/psi4manual/1.1/manage_git.html
http://semver.org/

PCMSolver

CHECK that the links at the bottom of the document are correct.

[Unreleased]: https://github.com/PCMSolver/pcmsolver/compare/v1.2.0...HEAD
[Version 1.2.0]: https://github.com/PCMSolver/pcmsolver/compare/vl.2.0-rcl...
—~v1.2.0

[Version 1.2.0-rcl]: https://github.com/PCMSolver/pcmsolver/compare/v1.1.12...
—vl.2.0-rcl

3. UPDATE the AUTHORS . md file:

Run git shortlog -sn and cross-check with the current contents of AUTHORS .md. Edit where
necessary and don’t forget to include, where available, the GitHub handle. Authors are ordered by the
number of commits.

Update the revision date at the bottom of this file.

>>> cat AUTHORS.md
Individual Contributors

- Roberto Di Remigio (Q@robertodr)

— Luca Frediani (@ilfreddy)

- Monica Bugeanu (@mbugeanu)

- Arnfinn Hykkerud Steindal (Qarnfinn)
— Radovan Bast (@bast)

— T. Daniel Crawford (Qlothian)

- Krzysztof Mozgawa

— Lori A. Burns (Q@loriab)

- Ville Weijo (@vweijo)

- Ward Poelmans (@wpoely86

This list was obtained 2018-03-02 by running “git shortlog -sn’

4. CHECK that the .mailmap file is up-to-date.
5. CHECK that the documentation builds locally.
6. ACT to check all the changed files in.

7. OBSERVE current versioning state

https://github.com/PCMSolver/pcmsolver/releases says v1.2.0-rcl & 9a8c391

>>> git tag

v1.1.0

vl.1l.1

v1.1.10

vl.1.11

v1l.1.12

vl.1.2

v1.1.3

vl.1.4

vl.1.5

vl.1.6

v1l.1.7

v1.1.8

v1.1.9

vl.2.0-rcl

>>> cat tools/metadata.py
__version__ = '"1.2.0-rcl'

(continues on next page)

52

Chapter 3. PCMSolver Programmers’ Manual

https://github.com/PCMSolver/pcmsolver/releases

PCMSolver

(continued from previous page)

__version_long = '1.2.0-rcl+9%9a8c391"
__version_upcoming_annotated_v_tag = '1.2.0"'
__version_most_recent_release = '1.1.12"

def version_formatter (dummy) :
return ' (inplace)'

>>> git describe —-—-abbrev=7 --long --always HEAD
v1.2.0-rcl-14-gfc02d9d

>>> git describe —-abbrev=7 --long —-dirty
v1.2.0-rcl-14-gfc02d9d-dirty

>>> python tools/versioner.py

—0.dev14+£fc02d9d

>>> git diff

Defining development snapshot version: 1.2.0.dev14+fc02d9d (computed)
1.2.0.dev1l4 {versioning-script} £c02d9d 1.1.12.999 dirty 1.1.12 <-- 1.2.

* Observe that current latest tag matches metadata script and git describe, that GH releases matches metadata

script, that upcoming in metadata script matches current versioner.py version.

8. ACT to bump tag in code. The current tag is v1.2.0-rc1, the imminent tagis v1.2.0.

 Edit current & prospective tag in tools/metadata.py. Use your decided-upon tag v1.2.0 and a

speculative next tag, say v1. 3.0, and use 7 “z”’s for the part you can’t predict.

>>> vim tools/metadata.py

>>> git diff

diff --git a/tools/metadata.py b/tools/metadata.py
index 5d87b55..6cbc05e 100644

-—-- a/tools/metadata.py

+++ b/tools/metadata.py

@@ -1,6 +1,6 @@

- version__ = '1.2.0-rcl'

—__version_long = '1.2.0-rcl+9a8c391"
—__version_upcoming_annotated_v_tag = '1.2.0"'
— _version_most_recent_release = '1.1.12"

+_ version_ = '1.2.0"

+__version_long = '1.2.0+zzzzzzz'
+__version_upcoming_annotated_v_tag = '1.3.0"'
+_ version_most_recent_release = '1.2.0'

e COMMIT changes to tools/metadata.py.

>>> git add tools/metadata.py
>>> git commit -m "Bump version to v1.2.0"

9. OBSERVE undefined version state. Note the 7-character git hash for the new commit, here £c02d9d.

>>> git describe —-—-abbrev=7 --long --always HEAD
v1.2.0-rcl-14-gfc02d9d

>>> git describe ——-abbrev=7 --long —-dirty

(continues on next page)

3.5. Versioning and minting a new release

53

PCMSolver

10.

(continued from previous page)

v1.2.0-rcl-14-gfc02d9d-dirty

>>> python tools/versioner.py

Undefining version for irreconcilable tags: 1.2.0-rcl (computed) vs 1.2.0,

— (recorded)

undefined {versioning-script} fc02d9d 1.2.0.999 dirty 1.2 <-—- undefined+fc02d9d

ACT to bump tag in git, then bump git tag in code.

» Use the decided-upon tag v1. 2. 0 and the observed hash £c02d9d to mint a new annotated tag, minding
that “v”’s are present here.

* Use the observed hash to edit tools/metadata.py and commit immediately.

>>> git tag -a v1.2.0 £c02d9d —m "Version 1.2.0 released"
>>> vim tools/metadata.py

>>> git diff

diff -—-git a/tools/metadata.py b/tools/metadata.py
index 6cbc05e..fdc202e 100644

-—— a/tools/metadata.py

+++ b/tools/metadata.py

@@ -1,5 +1,5 @@

__version__ = '1.2.0"

—-__version_long = '1.2.0+zzzzzzz'
+__version_long = '1.2.0+£c02d9d"
__version_upcoming_annotated_v_tag = '1.3.0'
__version_most_recent_release = '1.2.0"

>>> python tools/versioner.py
Amazing, this can't actually happen that git hash stored at git commit.

>>> git add tools/metadata.py

>>> git commit -m "Records tag for v1.2.0"

11. OBSERVE current versioning state. There is nothing to take note of. This is just a snapshot to ensure that you
did not mess up.
>>> python tools/versioner.py
Defining development snapshot version: 1.2.0.dev1+4e0596e (computed)
1.2.0.devl {master} 4e0596e 1.2.0.999 1.2 <——= 1.2.0.dev1+4e0596e
>>> git describe -—-abbrev=7 --long --always HEAD
v1.2.0-1-g4e0596e
>>> git describe --abbrev=7 --long —-dirty
v1.2.0-1-g4e0596e
>>> git tag
v1.1.0
vli.1.1
v1.1.10
vli.1.11
vl.1.12
vl.1.2
(continues on next page)
54 Chapter 3. PCMSolver Programmers’ Manual

PCMSolver

(continued from previous page)

vl.
vl.
vl.
vl.
vl.
vl.
vl.
vl.
vl.

S I e N e
O O W W Jo U bW

>>> cat tools/metadata.py

__version__ = '1.2.0"

__version_long = '1.2.0+£fc02d9d"
__version_upcoming_annotated_v_tag = '1.3.0"'
__version_most_recent_release = '1.2.0"

>>> cat metadata.out.py | head -8

__version__ = '1.2.0.devl"'
__version_branch_name = 'master'

_ _version_cmake = '1.2.0.999"
__version_is_clean = 'True'

_ _version_last_release = '1.2.0'
__version_long = '1.2.0.dev1+4e0596e’
__version_prerelease = 'False'
__version_release = 'False'

>>> git log —-oneline

4e0596e Records tag for v1.2.0
fc02d9d Bump version to v1.2.0

12. ACT to inform remote of bump

» Temporarily disengage “Include administrators” on protected release branch.

>>> git push origin release/1.2

>>> git push origin v1.2.0

* Now https://github.com/PCMSolver/pcmsolver/releases says v1.2.0 & £c023d9d

13. EDIT release description in the GitHub web UI.

Zenodo will automatically generate a new, versioned DOI for the new release. It is no longer necessary to update the

badge in the README . md since it will always resolve to the latest released by Zenodo.

3.5.2 How to create and remove an annotated Git tag on a remote

PCMSolver versioning only works with annotated tags, not lightweight tags as are created with the GitHub interface

* Create annotated tag:

>>> git push upstream —--tags

>>> git tag -a v1.1.12 <git hash if not current> -m "Version 1.1.12 released"

* Delete tag:

3.5. Versioning and minting a new release

55

https://github.com/PCMSolver/pcmsolver/releases
https://github.com/PCMSolver/pcmsolver/releases
https://zenodo.org/
https://github.com/PCMSolver/pcmsolver/releases/new

PCMSolver

>>> git tag -d v1.1.12
>>> git push origin :refs/tags/v1.1.12

* Pull tags:

’>>> git fetch <remote> 'refs/tags/*:refs/tags/«*"'

3.6 Code contributions

We have adopted a fully public fork and pull request workflow, where every proposed changeset has to go through a
code review and approval process.

The code changes are developed on a branch of the fork. When completed, the developer submits the changes for
review through the web interface: a pull request (PR) is opened, requesting that the changes from the source branch on
the fork be merged into a target branch in the canonical repository. Once the PR is open, the new code is automatically
tested. Core developers of PCMSolver will then review the contribution and discuss additional changes to be made.
Eventually, if all the tests are passing and a developer approves the suggested contribution, the changes are merged
into the target branch. The target branch is (usually) the master branch, that is, the main development branch.

Note: All PRs goes to the master branch

The creator of the PR is responsible for keeping the code up to date with master, so the code in the PR reflects what
will be the code in the master branch after merging.

3.6.1 Branching Model

We are using the stable mainline branching model for Git. In the main repository on github there are two types of
branches:

* one main developing branch, called master
* release branches

A new release branch is created from the master branch for a new release, with the format release/vMAJOR.
MINOR. A release branch will never be merged back to the master branch and will only receive bug fixes, thus no new
features. These bug fixes would be cherry picked from the master branch, to ensure that the master branch always
contains all bug fixes. In case a bug fix is only relevant for a given release, the bug should be fixed with a PR directly
to the corresponding release branch. In case a bug fix is easy to perform on a release branch but challenging to perform
on the master branch, the fix can be directed to a release branch. Then an issue have to be created to make sure it will
also be fixed on the master branch.

Feature branches are not created on the main repository, but on forks. These are based on the master branch from the
main repository and merged into the master branch through pull requests.

56 Chapter 3. PCMSolver Programmers’ Manual

http://www.bitsnbites.eu/a-stable-mainline-branching-model-for-git/

PCMSolver

3.7 Changelog

We follow the guidelines of Keep a CHANGELOG On all but the release branches, there is an Unreleased sec-
tion under which new additions should be listed. To simplify perusal of the CHANGELOG.md, use the following
subsections:

1. Added for new features.
. Changed for changes in existing functionality.
. Deprecated for once-stable features removed in upcoming releases.

2
3
4. Removed for deprecated features removed in this release.
5. Fixed for any bug fixes.

6

. Security to invite users to upgrade in case of vulnerabilities.

3.8 Updating Eigen Distribution

The C++ linear algebra library Eigen comes bundled with the module. To update the distributed version one has to:
1. download the desired version of the library to a scratch location. Eigen’s website is: http://eigen.tuxfamily.org/
2. unpack the downloaded archive;
3. go into the newly created directory and create a build directory;
4

. go into the newly created build directory and type the following (remember to substitute
@PROJECT_SOURCE_DIR @ with the actual path)

’cmake .. —DCMAKE_INSTALL_PREFIX=QPROJECT_SOURCE_DIR@/external/eigen3

Remember to commit and push your modifications.

3.9 Git Pre-Commit Hooks

Git pre-commit hooks are used to keep track of code style and license header in source files. Code style is checked
using clang-format for C/C++ and yapf for Python.

Warning: You need to install **clang-format™ (v3.9 recommended) and ““yapf~ (v0.20 recommended) to
run the code style validation hook!

License headers are checked using the 1icense_maintainer.py script and the header templates for the different
languages used in this project. The Python script checks the .gitattributes file to determine which license
headers need to be maintained and in which files:

src/pedra/pedra_dlapack.F90 !licensefile
src/solver/*.hpp licensefile=.githooks/LICENSE-C++

The first line specifies that the file in src/pedra/pedra_dlapack.F90 should not be touched, while the
second line states that all .hpp files in src/solver should get an header from the template in .githooks/
LICENSE-C++ Location of files in .gitattributes are always specified with respect to the project root direc-
tory.

3.7. Changelog 57

http://keepachangelog.com/
http://eigen.tuxfamily.org/
https://git-scm.com/book/gr/v2/Customizing-Git-Git-Hooks

PCMSolver

The hooks are located in the .githooks subdirectory and have to be installed by hand whenever you clone the
repository anew:

cd .git/hooks
cp —-symbolic-link ../../.githooks/x*

Installed hooks will always be executed. Use git commit --no-verify to bypass explicitly the hooks.

3.10 Profiling

You should obtain profiling information before attempting any optimization of the code. There are many ways of
obtaining this information, but we have only experimented with the following:

1. Using Linux perf and related tools.
2. Using gperftools.
3. Using Intel VTune.

Profiling should be done using the standalone executable run_pcm and any of the input files gathered under the
tests/benchmark directory. These files are copied to the build directory. If you are lazy, you can run the profiling
from the build directory:

>>> cd tests/benchmark

>>> env PYTHONPATH=<build_dir>/1ib64/python:SPYTHONPATH
python <build_dir>/bin/go_pcm.py —-inp=standalone.pcm —--exe=<build_dir>/bin

3.10.1 Using perf

perf is a tool available on Linux. Though part of the kernel tools, it is not usually preinstalled on most Linux
distributions. For visualization purposes we also need additional tools, in particular the flame graph generation scripts
Probably your distribution has them prepackaged already. per £ will trace all CPU events on your system, hence you
might need to fiddle with some kernel set up files to get permissions to trace events.

Note: perf is NOT available on stallo. Even if it were, you would probably not have permissions to record
kernel traces.

These are the instructions I used:

1. Trace execution. This will save CPU stack traces to a perf .data file. Successive runs do not overwrite this
file.

>>> cd tests/benchmark

>>> perf record -F 99 -g —-— env PYTHONPATH=<build_dir>/1ib64/python:SPYTHONPATH
—python
<build_dir>/bin/go_pcm.py —--inp=standalone.pcm —--exe=<build_dir>/bin

2. Get reports. There are different ways of getting a report from the perf . data file. The following will generate
a call tree.

>>> perf report --stdio

58 Chapter 3. PCMSolver Programmers’ Manual

http://www.brendangregg.com/perf.html
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/FlameGraph

PCMSolver

3. Generate an interactive flame graph.

>>> perf script | stackcollapse-perf.pl > out.perf-folded

>>> cat out.perf-folded | flamegraph.pl > perf-run_pcm.svg

3.10.2 Using gperftools

This set of tools was previously known as Google Performance Tools. The executable needs to be linked against the
profiler,tcmalloc and unwind libraries. CMake will attempt to find them. If this fails, you will have to install
them, you should either check if they are available for your distribution or compile from source. In principle, one
could use the LD_PRELOAD mechanism to skip the ad hoc compilation of the executable.

Note: gperftools is available on stallo, butit’s an ancient version.

1. Configure the code with the ——gperf option enabled. CPU and heap profiling, together with heap-checking
will be available.

2. CPU profiling can be done with the following command:

>>> env CPUPROFILE=run_pcm.cpu.prof PYTHONPATH=<build_dir>/1ib64/python:
—~$SPYTHONPATH
python <build_dir>/bin/go_pcm.py —--inp=standalone.pcm --exe=<build_dir>/

—bin

This will save the data to the run_pcm. cpu.prof file. To analyze the gathered data we can use the
pprof script:

’>>> pprof —--text <build_dir>/bin/run_pcm run_pcm.cpu.prof ‘

This will print a table. Any row will look like the following:

’2228 7.2% 24.8% 28872 93.4% pcm::utils::splinelInterpolation ‘

where the columns respectively report:
1. Number of profiling samples in this function.
2. Percentage of profiling samples in this function.
3. Percentage of profiling samples in the functions printed so far.
4. Number of profiling samples in this function and its callees.
5. Percentage of profiling samples in this function and its callees.
6. Function name.

For more details look here

3. Heap profiling can be done with the following command:

>>> env HEAPPROFILE=run_pcm.hprof PYTHONPATH=<build_dir>/1ib64/python:SPYTHONPATH
python <build_dir>/bin/go_pcm.py ——-inp=standalone.pcm —--exe=<build_dir>/
—bin

3.10. Profiling 59

https://gperftools.github.io/gperftools/cpuprofile.html

PCMSolver

This will output a series of datafiles run_pcm.hprof.0000.heap, run_pcm.hprof.0001.
heap and so forth. You will have to kill execution when enough samples have been collected. Analysis
of the heap profiling data can be done using pprof. Read more here

3.10.3 Using Intel VTune

This is probably the easiest way to profile the code. VTune is Intel software, it might be possible to get a personal,
free license. The instructions will hold on any machine where VTune is installed and you can look for more details on
the online documentation You can, in principle, use the GUI I haven’t managed to do that though.

On stallo, start an interactive job and load the following modules:

>>> module load intel/2018a

>>> module load CMake

>>> module load VTune

>>> export BOOST_ INCLUDEDIR=/home/roberto/Software/boost/include

>>> export BOOST_LIBRARYDIR=/home/roberto/Software/boost/lib

You will need to compile with optimizations activated, i.e. release mode. It is better to first parse the input file and
then call run_pcm:

>>> cd <build_dir>/tests/benchmark

>>> env PYTHONPATH=../../1ib64/python:SPYTHONPATH
python ../../bin/go_pcm.py —--inp=standalone_bubble.pcm

To start collecting hotspots:

’>>> amplxe-cl -collect hotspots ../../bin/run_pcm @standalone_bubble.pcm

VTune will generate a folder r000hs with the collected results. A report for the hotspots can be generated with:

’>>> amplxe-cl -report hotspots —-r r000hs > report

3.11 Testing

We perform unit testing of our API. The unit testing framework used is Catch The framework provides quite an
extensive set of macros to test various data types, it also provides facilities for easily setting up test fixtures. Usage is
extremely simple and the documentation is very well written. For a quick primer on how to use Catch refer to: https:
//github.com/philsquared/Catch/blob/master/docs/tutorial.md The basic idea of unit testing is to test each building
block of the code separataly. In our case, the term “building block” is used to mean a class.

To add new tests for your class you have to:

1. create a new subdirectory inside tests/ and add a line like the following to the CMakeLists.txt

add_subdirectory (new_subdir)

2. create a CMakeLists.txt inside your new subdirectory. This CMakeLists.txt adds the source for a
given unit test to the global UnitTestsSources property and notifies CTest that a test with given name is

60 Chapter 3. PCMSolver Programmers’ Manual

https://gperftools.github.io/gperftools/heapprofile.html
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/vtune-amplifier-help
https://github.com/philsquared/Catch
https://github.com/philsquared/Catch/blob/master/docs/Readme.md
https://github.com/philsquared/Catch/blob/master/docs/tutorial.md
https://github.com/philsquared/Catch/blob/master/docs/tutorial.md

PCMSolver

20

21

22

23

24

25

26

27

28

29

30

31

32

part of the test suite. The generation of the CMakeLists.txt can be managed by make_cmake_files.
py Python script. This will take care of also setting up CTest labels. This helps in further grouping the tests for
our convenience. Catch uses tags to index tests and tags are surrounded by square brackets. The Python script
inspects the sources and extracts labels from Catch tags. The add_Catch_test CMake macro takes care of
the rest:

add_Catch_test (
NAME
<test-name> # Mandatory!
LABELS
<test-labels> # Mandatory! One per line, for readability
DEPENDS
<test-dependencies> # Optional. One per line, for readability
REFERENCE_FILES
<test-refs> # Optional. One per line, for readability
COST
<test-cost> # Optional. Roughly the seconds it takes to run the test

We require that each source file containing tests follows the naming convention new_subdir_testname and that
testname gives some clue to what is being tested. Depending on the execution of tests in a different subdirectory
is bad practice. A possible workaround is to add some kind of input file and create a text fixture that sets up the
test environment. Have a look in the tests/input directory for an example

. create the . cpp files containing the tests. Use the following template:

/%
* PCMSolver, an API for the Polarizable Continuum Model
* Copyright (C) 2016 Roberto Di Remigio, Luca Frediani and collaborators.

* This file is part of PCMSolver.

* PCMSolver is free software: you can redistribute it and/or modify

* 1t under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

* PCMSolver is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.

* You should have received a copy of the GNU Lesser General Public License
* along with PCMSolver. If not, see <http://www.gnu.org/licenses/>.

*
* For information on the complete 1list of contributors to the

* PCMSolver API, see: <http://pcmsolver.readthedocs.io/>
*/

#include "catch.hpp"

#include <cmath>
#include <vector>

#include <Eigen/Core>

#include "TestingMolecules.hpp"
#include "cavity/GePolCavity.hpp"

(continues on next page)

3.11. Testing 61

PCMSolver

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55
56

57

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

(continued from previous page)

SCENARIO ("GePol cavity for a single sphere", "[gepol] [gepol_point]") {
GIVEN ("A single sphere") {
double area = 0.4;
double probeRadius = 0.0;
double minRadius = 100.0;
WHEN ("the sphere is obtained from a Molecule object") {
Molecule point = dummy<O0>();
GePolCavity cavity = GePolCavity (point, area, probeRadius, minRadius, "point
=");

cavity.saveCavity ("point.npz");

/+! \class GePolCavity
* \test \b GePolCavityTest_size tests GePol cavity size for a point,,
—charge in
* Cl symmetry without added spheres

*/

THEN ("the size of the cavity is") {
int size = 32;
int actualSize = cavity.size();
REQUIRE (size == actualSize);

}
/+! \class GePolCavity
* \test \b GePolCavityTest_area tests GePol cavity surface area for a,
—point
* charge in Cl symmetry without added spheres
*/
AND_THEN ("the surface area of the cavity is") {
double area = 4.0 » M_PI % pow(l.0, 2);
double actualArea = cavity.elementArea () .sum();
REQUIRE (area == Approx(actualArea));
}
/#! \class GePolCavity
* \test \b GePolCavityTest_volume tests GePol cavity volume for a point
* charge in Cl symmetry without added spheres
*/
AND_THEN ("the volume of the cavity is") {
double volume = 4.0 = M_PI % pow (1.0, 3) / 3.0;

Eigen::Matrix3Xd elementCenter = cavity.elementCenter();
Eigen::Matrix3Xd elementNormal = cavity.elementNormal ();
double actualVolume = 0;

for (int i = 0; i < cavity.size(); ++1i) {

actualVolume +=
cavity.elementArea (i) * elementCenter.col (i) .dot (elementNormal.
—col (1));
}
actualVolume /= 3;
REQUIRE (volume == Approx (actualVolume));

GIVEN ("A single sphere") {
double area = 0.4;
double probeRadius = 0.0;
double minRadius = 100.0;
WHEN ("the sphere is obtained from a Sphere object") ({

(continues on next page)

62

Chapter 3. PCMSolver Programmers’ Manual

PCMSolver

86

87

88
89

90

91

92

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

(continued from previous page)

Sphere sph(Eigen::Vector3d::Zero(), 1.0);
GePolCavity cavity = GePolCavity (sph, area, probeRadius, minRadius, "point

=)

/+! \class GePolCavity
* \test \b GePolCavitySphereCTORTest_size tests GePol cavity size for a,,
—point
* charge in Cl symmetry without added spheres
*/
THEN ("the size of the cavity is") {
int size = 32;
int actualSize = cavity.size();
REQUIRE (size == actualSize);
}
/+! \class GePolCavity
* \test \b GePolCavitySphereCTORTest_area tests GePol cavity surface area,
—~for
* a point charge in Cl symmetry without added spheres
*/
AND_THEN ("the surface area of the cavity is") {
double area = 4.0 » M_PI % pow(l.0, 2);
double actualArea = cavity.elementArea () .sum();
REQUIRE (area == Approx (actualArea));
}
/+! \class GePolCavity
+ \test \b GePolCavitySphereCTORTest_volume tests GePol cavity volume for,,
—a
* point charge in Cl symmetry without added spheres
*/
AND_THEN ("the volume of the cavity is") {
double volume = 4.0 » M_PI x pow(1.0, 3) / 3.0;

Eigen::Matrix3Xd elementCenter = cavity.elementCenter();
Eigen::Matrix3Xd elementNormal = cavity.elementNormal () ;
double actualVolume = 0;

for (int i1 = 0; i < cavity.size(); ++1i) {

actualVolume +=
cavity.elementArea (i) * elementCenter.col (i) .dot (elementNormal.
—col (1)),
}
actualVolume /= 3;
REQUIRE (volume == Approx(actualVolume));

In this example we are creating a test fixture. The fixture will instatiate a GePolCavity with fixed param-
eters. The result is then tested against reference values in the various SECTION s. It is important to add the
documentation lines on top of the tests, to help other developers understand which class is being tested and what
parameters are being tested. Within Catch fixtures are created behind the curtains, you do not need to worry
about those details. This results in somewhat terser test source files.

3.11. Testing 63

PCMSolver

3.12 Timer class

The Timer class enables timing of execution throughout the module. Timer support is enabled by passing
-DENABLE_TIMER=ON to the setup.py script. Timing macros are available by inclusion of the Config.hpp
header file.

The class is basically a wrapper around an ordered map of strings and cpu timers. To time a code snippet:

TIMER_ON ("code—-snippet");
// code-snippet
TIMER_OFF ("code-snippet");

The timings are printed out to the pcmsolver.timer.dat by a call to the TIMER_DONE macro. This should
obviously happen at the very end of the execution!

Defines

TIMER ON(...)
TIMER_OFF (...)
TIMER_DONE (...)

64 Chapter 3. PCMSolver Programmers’ Manual

CHAPTER
FOUR

CLASSES AND FUNCTIONS REFERENCE

4.1 Cavities

We will here describe the inheritance hierarchy for generating cavities, in order to use and extend it properly. The
runtime creation of cavity objects relies on the Factory Method pattern [GHIV94][Ale01], implemented through the
generic Factory class.

4.1.1 ICavity

class pcm::ICavity
Abstract Base Class for cavities.

This class represents a cavity made of spheres, its surface being discretized in terms of finite elements.
Author Krzysztof Mozgawa
Date 2011

Subclassed by pcm::cavity::GePolCavity, pcm::cavity::RestartCavity

Public Functions
ICavity ()
Default constructor.

ICavity (const Sphere &sph)
Constructor from a single sphere.

Only used when we have to deal with a single sphere, i.e. in the unit tests
Parameters
* [in] sph: the sphere

ICavity (const std::vector<Sphere> &sph)
Constructor from list of spheres.

Only used when we have to deal with a single sphere, i.e. in the unit tests

Parameters

65

PCMSolver

* [in] sph: the list of spheres
ICavity (const Molecule &molec)
Constructor from Molecule.
Parameters
* [in] molec: the molecular aggregate

void saveCavity (const std::string &frname = "cavity.npz")
Save cavity specification to file.

The cavity specification contains: 0. the number of finite elements, nElements;

i. the weight of the finite elements, elementArea;
ii. the radius of the finite elements, elementRadius;

iii. the centers of the finite elements, elementCenter;

iv. the normal vectors relative to the centers, elementNormal. Each of these objects is saved in a separate

.npy binary file and compressed into one .npz file. Notice
needed to restart an energy calculation.

void loadCavity (const std::string &frname = "cavity.npz")
Load cavity specification from file.

Protected Attributes

std::vector<Sphere> spheres__
List of spheres.

Molecule molecule_
The molecule to be wrapped by the cavity.

PCMSolverIndex nElements__
Number of finite elements generated.

PCMSolverlndex nIrrElements__
Number of irreducible finite elements.

bool built
Whether the cavity has been built.

Eigen::Matrix3Xd elementCenter__
Coordinates of elements centers.

Eigen::Matrix3Xd elementNormal _
Outward-pointing normal vectors to the elements centers.

Eigen::VectorXd elementArea_
Elements areas.

int nSpheres__
Number of spheres.

Eigen::Matrix3Xd element SphereCenter__
Centers of the sphere the elements belong to.

Eigen::VectorXd elementRadius_
Radii of the sphere the elements belong to.

that this is just the minimal set of data

66

Chapter 4

. Classes and functions reference

PCMSolver

Eigen::Matrix3Xd sphereCenter_
Spheres centers.

Eigen::VectorXd sphereRadius__
Spheres radii.

std::vector<Element> elements__
List of finite elements.

Symmetry pointGroup_
Molecular point group.

Private Functions

void makeCavity () =0
Creates the cavity and discretizes its surface.

Has to be implemented by classes lower down in the inheritance hierarchy

4.1.2 GePolCavity

class pcm::cavity::GePolCavity : public pcm::[Cavity
A class for GePol cavity.

This class is an interface to the Fortran code PEDRA for the generation of cavities according to the GePol

algorithm.
Author Krzysztof Mozgawa, Roberto Di Remigio
Date 2011, 2016

Private Functions
void makeCavity () override
Creates the cavity and discretizes its surface.
Has to be implemented by classes lower down in the inheritance hierarchy
void build (const std::string &suffix, int maxts, int maxsp, int maxvert)
Driver for PEDRA Fortran module.
Parameters
* [in] suffix: for the cavity.off and PEDRA.OUT files, the PID will also be added
e [in] maxts: maximum number of tesserae
* [in] maxsp: maximum number of spheres (original + added)
e [in] maxvert: maximum number of vertices

void writeOFF (const std::string &suffix)
Writes the cavity.off file for visualizing the cavity.

Parameters

* [in] suffix: for the cavity.off The full name of the visualization file will be cav-

ity.off_suffix_PID

4.1. Cavities

67

PCMSolver

4.1.3 RestartCavity

class pcm::cavity::RestartCavity : public pcm::ICavity

4.2

A class for Restart cavity.
Author Roberto Di Remigio
Date 2014

Public Functions

void makeCavity () override
Creates the cavity and discretizes its surface.

Has to be implemented by classes lower down in the inheritance hierarchy

Green’s Functions

We will here describe the inheritance hierarchy for generating Green’s functions, in order to use and extend it prop-

erly.

The runtime creation of Green’s functions objects relies on the Factory Method pattern [GHIV94][Ale01],

implemented through the generic Factory class.

The top-level header, _i.e._ to be included in client code, is Green.hpp. The common interface to all Green’s
function classes is specified by the IGreensFunction class, this is non-templated. All other classes are templated.
The Green’s functions are registered to the factory based on a label encoding: type, derivative, and dielectric profile.
The only allowed labels must be listed in src/green/Green. hpp. If they are not, they can not be selected at run

time.

4.2.1 IGreensFunction

class pcm: :IGreensFunction

Interface for Green’s function classes.

We define as Green'’s function a function:
G(r,v'):R° - R

Green’s functions and their directional derivatives appear as kernels of the S and D integral operators. Forming
the matrix representation of these operators requires performing integrations over surface finite elements. Since
these Green’s functions present a Coulombic divergence, the diagonal elements of the operators will diverge
unless appropriately formulated. This is possible, but requires explicit access to the subtype of this abstract base
object. This justifies the need for the singleLayer and doubleLayer functions. The code uses the Non-Virtual
Interface (NVI) idiom.

Author Luca Frediani and Roberto Di Remigio

Date 2012-2016

Subclassed by pcm::green::GreensFunction< DerivativeTraits, dielectric_profile::Anisotropic >,
pem::green::GreensFunction< DerivativeTraits, dielectric_profile::Sharp >, pcm::green::GreensFunction<
DerivativeTraits, dielectric_profile::Uniform >, pem::green::GreensFunction< DerivativeTraits,

dielectric_profile::Yukawa >, pcm::green::GreensFunction< DerivativeTraits, ProfilePolicy >,
pcm::green::GreensFunction< Stencil, ProfilePolicy >

68

Chapter 4. Classes and functions reference

PCMSolver

Unnamed Group
double kernels (const Eigen::Vector3d &pI, const Eigen::Vector3d &p2) const
Methods to sample the Green’s function and its probe point directional derivative

Returns value of the kernel of the S integral operator, i.e. the value of the Greens’s function for the pair of
points pl, p2: G(p1,p2)

Note This is the Non-Virtual Interface (NVI)
Parameters

* [in] pl: first point

* [in] p2: second point

double kernelD (const Eigen::Vector3d &direction, const Eigen::Vectordd &pl, const

Eigen::Vector3d &p2) const
Returns value of the kernel of the D integral operator for the pair of points pl, p2: [V, G(p1, P2)] - Dp,
To obtain the kernel of the D operator call this methods with p; and p, exchanged and with np, = np,

Note This is the Non-Virtual Interface (NVI)
Parameters

e [in] direction: the direction

* [in] pl: first point

* [in] p2: second point

Unnamed Group

double singleLayer (const Element &e, double factor) const
Methods to compute the diagonal of the matrix representation of the S and D operators by approximate
collocation.

Calculates an element on the diagonal of the matrix representation of the S operator using an approximate
collocation formula.

Note This is the Non-Virtual Interface (NVI)
Parameters
* [in] e: finite element on the cavity
* [in] factor: the scaling factor for the diagonal elements

double doublelayer (const Element &e, double factor) const
Calculates an element of the diagonal of the matrix representation of the D operator using an approximate
collocation formula.

Note This is the Non-Virtual Interface (NVI)
Parameters
* [in] e: finite element on the cavity

* [in] factor: the scaling factor for the diagonal elements

4.2,

Green’s Functions 69

PCMSolver

Unnamed Group
double kernelS_impl (const Eigen::Vector3d &pl, const Eigen::Vector3d &p2) const =0
Methods to sample the Green’s function and its probe point directional derivative

Returns value of the kernel of the S integral operator, i.e. the value of the Greens’s function for the pair of
points pl, p2: G(p1,p2)

Parameters
* [in] pl: first point
* [in] p2: second point

double kernelD_impl (const FEigen::Vector3d &direction, const Eigen::Vector3d &pl, const
Eigen::Vector3d &p2) const =0
Returns value of the kernel of the D integral operator for the pair of points pl, p2: [V, G(p1, P2)] - Np,
To obtain the kernel of the D operator call this methods with p; and p> exchanged and with np, = np,

Parameters
e [in] direction: the direction
* [in] p1l: first point

* [in] p2: second point

Unnamed Group

double singleLayer_ impl (const Element &e, double factor) const =0
Methods to compute the diagonal of the matrix representation of the S and D operators by approximate
collocation.

Calculates an element on the diagonal of the matrix representation of the S operator using an approximate
collocation formula.

Parameters
* [in] e: finite element on the cavity
* [in] factor: the scaling factor for the diagonal elements

double doublelLayer_ impl (const Element &e, double factor) const =0
Calculates an element of the diagonal of the matrix representation of the D operator using an approximate
collocation formula.

Parameters
* [in] e: finite element on the cavity

* [in] factor: the scaling factor for the diagonal elements

70 Chapter 4. Classes and functions reference

PCMSolver

Public Functions
booluniform() const =0
Whether the Green’s function describes a uniform environment

double permittivity () const =0
Returns a dielectric permittivity

4.2.2 GreensFunction

template<typename DerivativeTraits, typename ProfilePolicy>
class pcm::green: :GreensFunction : public pcm::IGreensFunction
Templated interface for Green’s functions.
Author Luca Frediani and Roberto Di Remigio
Date 2012-2016
Template Parameters
* DerivativeTraits: evaluation strategy for the function and its derivatives

e ProfilePolicy: dielectric profile type

Unnamed Group

double derivativeSource (const Eigen::Vector3d &normal_pl, const Eigen::Vector3d &pl,

const Figen::Vector3d &p2) const
Methods to sample the Green’s function directional derivatives

Returns value of the directional derivative of the Greens’s function for the pair of points pl, p2:
Vp:G(P1,p2) - np, Notice that this method returns the directional derivative with respect to the source
point.

Parameters
* [in] normal_p1l: the normal vector to pl
* [in] pl: first point
* [in] p2: second point

double derivativeProbe (const FEigen::Vector3d &normal_p2, const FEigen::Vector3d &pl,

const Figen::Vector3dd &p2) const final
Returns value of the directional derivative of the Greens’s function for the pair of points pl, p2:

V2 G(P1,P2) - np, Notice that this method returns the directional derivative with respect to the probe
point.

Parameters
* [in] normal_p?2: the normal vector to p2
* [in] p1l: first point

* [in] p2: second point

4.2. Green’s Functions 71

PCMSolver

Unnamed Group

Eigen::Vector3d gradientSource (const Eigen::Vector3d &pl, const Eigen::Vector3dd &p2)

const .
Methods to sample the Green’s function gradients

Returns full gradient of Greens’s function for the pair of points pl, p2: Vp, G(p1, p2) Notice that this
method returns the gradient with respect to the source point.

Parameters
* [in] pl: first point
* [in] p2: second point

Eigen::Vector3d gradientProbe (const Eigen::Vector3d &pl, const Eigen::Vectordd &p2)

const
Returns full gradient of Greens’s function for the pair of points pl, p2: Vp,G(p1, p2) Notice that this

method returns the gradient with respect to the probe point.
Parameters
* [in] pl: first point

* [in] p2: second point

Public Functions

bool uniform () const f£final override
Whether the Green’s function describes a uniform environment

Protected Functions
DerivativeTraits operatorx () (DerivativeTraits *source, DerivativeTraits *probe) const =0
Evaluates the Green’s function given a pair of points
Parameters
* [in] source: the source point
* [in] probe: the probe point
double kernelS_impl (const Eigen::Vector3d &pl, const Eigen::Vector3dd &p2) const final

override . . .
Returns value of the kernel of the S integral operator, i.e. the value of the Greens’s function for the pair of
points pl, p2: G(p1,p2)

Note Relies on the implementation of operator() in the subclasses and that is all subclasses need to imple-
ment. Thus this method is marked final.

Parameters
* [in] p1l: first point

* [in] p2: second point

72 Chapter 4. Classes and functions reference

PCMSolver

Protected Attributes
double delta_
Step for numerical differentiation.

ProfilePolicy profile_
Permittivity profile.

4.2.3 Vacuum

template<typename DerivativeTraits = AD_directional>
class pcm::green: :Vacuum: public pem::green::GreensFunction<DerivativeTraits, dielectric_profile:: Uniform>
Green’s function for vacuum.
Author Luca Frediani and Roberto Di Remigio
Date 2012-2016
Template Parameters

* DerivativeTraits: evaluation strategy for the function and its derivatives

Public Functions

double permittivity () const final override
Returns a dielectric permittivity

Private Functions
DerivativeTraits operator () (DerivativeTraits *sp, DerivativeTraits *pp) const override
Evaluates the Green’s function given a pair of points
Parameters
* [in] source: the source point
* [in] probe: the probe point

double kernelD_impl (const Eigen::Vector3dd &direction, const Eigen::Vector3d &pl, const
Eigen::Vector3d &p2) const override
Returns value of the kernel of the D integral operator for the pair of points p1, p2: [eVp,G(p1,P2)] - hp,
To obtain the kernel of the D operator call this methods with p; and p exchanged and with np,, = np,

Parameters
e [in] direction: the direction
* [in] pl: first point
* [in] p2: second point

double singleLayer_impl (const Element &e, double factor) const override
Methods to compute the diagonal of the matrix representation of the S and D operators by approximate
collocation.

Calculates an element on the diagonal of the matrix representation of the S operator using an approximate
collocation formula.

Parameters

4.2. Green’s Functions 73

PCMSolver

* [in] e: finite element on the cavity
* [in] factor: the scaling factor for the diagonal elements

double doubleLayer_ impl (const Element &e, double factor) const override
Calculates an element of the diagonal of the matrix representation of the D operator using an approximate
collocation formula.

Parameters
* [in] e: finite element on the cavity

* [in] factor: the scaling factor for the diagonal elements

4.2.4 UniformDielectric

template<typename DerivativeTraits = AD_directional>
class pcm::green: :UniformDielectric: public pem::green::GreensFunction<DerivativeTraits, dielectric_profile:: Unifc
Green’s function for uniform dielectric.
Author Luca Frediani and Roberto Di Remigio
Date 2012-2016
Template Parameters

* DerivativeTraits: evaluation strategy for the function and its derivatives

Public Functions

double permittivity () const final override
Returns a dielectric permittivity

Private Functions
DerivativeTraits operator () (DerivativeTraits *sp, DerivativeTraits *pp) const override
Evaluates the Green’s function given a pair of points
Parameters
* [in] source: the source point
* [in] probe: the probe point

double kernelD_impl (const FEigen::Vector3d &direction, const FEigen::Vector3d &pl, const

Eigen::Vector3d &p2) const override
Returns value of the kernel of the D integral operator for the pair of points pl, p2: [V, G(p1, p2)] - Dp,

To obtain the kernel of the D operator call this methods with p; and p exchanged and with np,, = np,
Parameters

* [in] direction: the direction

* [in] pl: first point

* [in] p2: second point

74 Chapter 4. Classes and functions reference

PCMSolver

double singlelLayer impl (const Element &e, double factor) const override
Methods to compute the diagonal of the matrix representation of the S and D operators by approximate
collocation.

Calculates an element on the diagonal of the matrix representation of the S operator using an approximate
collocation formula.

Parameters
* [in] e: finite element on the cavity
* [in] factor: the scaling factor for the diagonal elements

double doublelLayer impl (const Element &e, double factor) const override
Calculates an element of the diagonal of the matrix representation of the D operator using an approximate
collocation formula.

Parameters
* [in] e: finite element on the cavity

* [in] factor: the scaling factor for the diagonal elements

4.2.5 lonicLiquid

template<typename DerivativeTraits = AD_directional>
class pcm::green: :IonicLiquid: publiec pem::green::GreensFunction<DerivativeTraits, dielectric_profile:: Yukawa>
Green’s functions for ionic liquid, described by the linearized Poisson-Boltzmann equation.
Author Luca Frediani, Roberto Di Remigio
Date 2013-2016
Template Parameters

* DerivativeTraits: evaluation strategy for the function and its derivatives

Public Functions

double permittivity () const final override
Returns a dielectric permittivity

Private Functions
DerivativeTraits operator () (DerivativeTraits *sp, DerivativeTraits *pp) const override
Evaluates the Green’s function given a pair of points
Parameters
* [in] source: the source point
* [in] probe: the probe point

double kernelD_impl (const Eigen::Vector3dd &direction, const Eigen::Vector3d &pl, const
Eigen::Vector3d &p2) const override
Returns value of the kernel of the D integral operator for the pair of points pl, p2: [V, G(P1, P2)] - Dp,
To obtain the kernel of the DT operator call this methods with p; and p, exchanged and with np, = Np,

Parameters

4.2. Green’s Functions 75

PCMSolver

e [in] direction: the direction
* [in] pl: first point
* [in] p2: second point

double singleLayer impl (const Element&, double) const override
Methods to compute the diagonal of the matrix representation of the S and D operators by approximate
collocation.

Calculates an element on the diagonal of the matrix representation of the S operator using an approximate
collocation formula.

Parameters
* [in] e: finite element on the cavity
* [in] factor: the scaling factor for the diagonal elements

double doubleLayer_impl (const Element&, double) const override
Calculates an element of the diagonal of the matrix representation of the D operator using an approximate
collocation formula.

Parameters
* [in] e: finite element on the cavity

* [in] factor: the scaling factor for the diagonal elements

4.2.6 AnisotropicLiquid

template<typename DerivativeTraits = AD_directional>
class pcm::green: :AnisotropiclLiquid: public pemi:green::GreensFunction<DerivativeTraits, dielectric_profile::Anisc
Green’s functions for anisotropic liquid, described by a tensorial permittivity.
Author Roberto Di Remigio
Date 2016
Template Parameters

* DerivativeTraits: evaluation strategy for the function and its derivatives

Public Functions

AnisotropicLiquid (const Eigen::Vector3d &eigen_eps, const Eigen::Vector3d &euler_ang)
Parameters
* [in] eigen_eps: eigenvalues of the permittivity tensors
* [in] euler_ang: Euler angles in degrees

double permittivity () const final override
Returns a dielectric permittivity

76 Chapter 4. Classes and functions reference

PCMSolver

Private Functions
DerivativeTraits operatox () (DerivativeTraits *sp, DerivativeTraits *pp) const override
Evaluates the Green’s function given a pair of points
Parameters
* [in] source: the source point
* [in] probe: the probe point

double kernelD_impl (const Eigen::Vector3dd &direction, const Eigen::Vector3d &pl, const
Eigen::Vector3d &p2) const override
Returns value of the kernel of the D integral operator for the pair of points pl, p2: [eVp,G(p1, P2)] - Dp,
To obtain the kernel of the DT operator call this methods with p; and p» exchanged and with np, = np,

Parameters
e [in] direction: the direction
* [in] pl: first point
* [in] p2: second point

double singleLayer_ impl (const Element&, double) const override
Methods to compute the diagonal of the matrix representation of the S and D operators by approximate
collocation.

Calculates an element on the diagonal of the matrix representation of the S operator using an approximate
collocation formula.

Parameters
* [in] e: finite element on the cavity
* [in] factor: the scaling factor for the diagonal elements

double doublelLayer_ impl (const Element&, double) const override
Calculates an element of the diagonal of the matrix representation of the D operator using an approximate
collocation formula.

Parameters
* [in] e: finite element on the cavity

* [in] factor: the scaling factor for the diagonal elements

4.2.7 SphericalDiffuse

template<typename ProfilePolicy = dielectric_profile::OneLayerLog>
class pcm::green: :SphericalDiffuse : public pcm::green::GreensFunction<Stencil, ProfilePolicy>
Green’s function for a diffuse interface with spherical symmetry.

The origin of the dielectric sphere can be changed by means of the constructor. The solution of the differential
equation defining the Green’s function is always performed assuming that the dielectric sphere is centered in
the origin of the coordinate system. Whenever the public methods are invoked to “sample” the Green’s function
at a pair of points, a translation of the sampling points is performed first.

Author Hui Cao, Ville Weijo, Luca Frediani and Roberto Di Remigio
Date 2010-2015

Template Parameters

4.2. Green’s Functions 77

PCMSolver

e ProfilePolicy: functional form of the diffuse layer

Unnamed Group
int maxLGreen_
Parameters and functions for the calculation of the Green’s function, including Coulomb singularity
Maximum angular momentum in the final summation over Legendre polynomials to obtain G
std::vector<RadialFunction<detail::StateType, detail::LnTransformedRadial, Zeta>> zeta__
First independent radial solution, used to build Green’s function.

Note The vector has dimension maxLGreen_ and has r*l behavior

std::vector<RadialFunction<detail::StateType, detail::LnTransformedRadial, Omega>> omega__
Second independent radial solution, used to build Green’s function.

Note The vector has dimension maxLGreen_ and has r(-1-1) behavior

double imagePotentialComponent_impl (int L, const Eigen::Vector3d &sp, const

Eigen::Vector3d &pp, double Cri2) const
Returns L-th component of the radial part of the Green’s function.

Note This function shifts the given source and probe points by the location of the dielectric sphere.
Parameters

* [in] L: angular momentum

* [in] sp: source point

* [in] pp: probe point

* [in] Cr12: Coulomb singularity separation coefficient

Unnamed Group

int maxLC__
Parameters and functions for the calculation of the Coulomb singularity separation coefficient
Maximum angular momentum to obtain C(r, r’), needed to separate the Coulomb singularity
RadialFunction<detail::StateType, detail::LnTransformedRadial, Zeta> zetaC__
First independent radial solution, used to build coefficient.

Note This is needed to separate the Coulomb singularity and has 1 behavior

RadialFunction<detail::StateType, detail::LnTransformedRadial, Omega> omegaC__
Second independent radial solution, used to build coefficient.

Note This is needed to separate the Coulomb singularity and has r(-1-1) behavior

double coefficient_impl (const Eigen::Vector3d &sp, const Eigen::Vector3d &pp) const
Returns coefficient for the separation of the Coulomb singularity.

Note This function shifts the given source and probe points by the location of the dielectric sphere.

Parameters

78 Chapter 4. Classes and functions reference

PCMSolver

* [in] sp: first point

e [in] pp: second point

Public Functions
SphericalDiffuse (double e/, double €2, double w, double ¢, const Eigen::Vector3d &o, int /)
Constructor for a one-layer interface
Parameters
e [in] el: left-side dielectric constant
* [in] e2: right-side dielectric constant
* [in] w: width of the interface layer
* [in] c: center of the diffuse layer
* [in] o: center of the sphere
* [in] 1: maximum value of angular momentum

double permittivity () const final override
Returns a dielectric permittivity

double coefficientCoulomb (const Eigen::Vector3d &source, const Eigen::Vector3d &probe)

. ., const .
Returns Coulomb singularity separation coefficient.

Parameters
* [in] source: location of the source charge
* [in] probe: location of the probe charge
double Coulomb (const Eigen::Vector3dd &source, const Eigen::Vector3d &probe) const
Returns singular part of the Green’s function.
Parameters
* [in] source: location of the source charge
* [in] probe: location of the probe charge

double imagePotential (const Eigen::Vector3d &source, const Eigen::Vector3d &probe)

const
Returns non-singular part of the Green’s function (image potential)

Parameters
* [in] source: location of the source charge

* [in] probe: location of the probe charge

double coefficientCoulombDerivative (const Eigen::Vector3dd &direction, const
Eigen::Vector3d &pl, const Eigen::Vector3d
&p2) const

Returns value of the directional derivative of the Coulomb singularity separation coefficient for the pair of
points p1, p2: V,G(p1, P2) - #*np, Notice that this method returns the directional derivative with respect
to the probe point, thus assuming that the direction is relative to that point.

4.2,

Green’s Functions 79

PCMSolver

Parameters
* [in] direction: the direction
* [in] pl: first point
* [in] p2: second point

double CoulombDerivative (const Eigen::Vectordd &direction, const Eigen::Vector3d &pl,

const Figen::Vector3d &p2) const
Returns value of the directional derivative of the singular part of the Greens’s function for the pair of points

pl, p2: Vp,G(p1, p2) - *np, Notice that this method returns the directional derivative with respect to the
probe point, thus assuming that the direction is relative to that point.
Parameters

e [in] direction: the direction

* [in] pl: first point

* [in] p2: second point

double imagePotentialDerivative (const Eigen::Vector3d &direction, const
Eigen::Vector3dd &pl, const FEigen::Vector3dd &p2)

const

Returns value of the directional derivative of the non-singular part (image potential) of the Greens’s func-
tion for the pair of points pl, p2: Vp,G(p1, p2) - *np, Notice that this method returns the directional
derivative with respect to the probe point, thus assuming that the direction is relative to that point.
Parameters

* [in] direction: the direction

* [in] pl: first point

* [in] p2: second point

std::tuple<double, double> epsilon (const Eigen::Vector3d &point) const
Handle to the dielectric profile evaluation

Private Functions
Stencil operator () (Stencil *sp, Stencil *pp) const override
Evaluates the Green’s function given a pair of points
Note This takes care of the origin shift
Parameters
* [in] sp: the source point
* [in] pp: the probe point

double kernelD_impl (const Eigen::Vector3dd &direction, const Eigen::Vector3dd &pl, const

Eigen::Vector3d &p2) const override
Returns value of the kernel of the D integral operator for the pair of points pl, p2: [V, G(p1, P2)] - Dp,

To obtain the kernel of the D operator call this methods with p; and p exchanged and with np, = np,
Parameters

e [in] direction: the direction

80 Chapter 4. Classes and functions reference

PCMSolver

* [in] pl: first point
* [in] p2: second point

double singleLayer_ impl (const Element &e, double factor) const override
Methods to compute the diagonal of the matrix representation of the S and D operators by approximate
collocation.

Calculates an element on the diagonal of the matrix representation of the S operator using an approximate
collocation formula.

Parameters
* [in] e: finite element on the cavity
* [in] factor: the scaling factor for the diagonal elements

double doubleLayer_ impl (const Element &e, double factor) const override
Calculates an element of the diagonal of the matrix representation of the D operator using an approximate
collocation formula.

Parameters
* [in] e: finite element on the cavity
* [in] factor: the scaling factor for the diagonal elements

void initSphericalDiffuse ()
This calculates all the components needed to evaluate the Green’s function

Private Members
Eigen::Vector3d origin_

Center of the dielectric sphere

4.3 Dielectric profiles

4.3.1 Uniform

struct Uniform
a uniform dielectric profile

Author Roberto Di Remigio
Date 2015

4.3. Dielectric profiles 81

PCMSolver

4.3.2 Anisotropic

class pcm::dielectric_profile::Anisotropic
describes a medium with anisotropy, i.e. liquid crystal
Author Roberto Di Remigio
Date 2014

Public Functions

Anisotropic (const Figen::Vector3d &eigen_eps, const Eigen::Vector3d &euler_ang)
Parameters
* [in] eigen_eps: eigenvalues of the permittivity tensors

* [in] euler_ang: Euler angles in degrees

Private Functions

void build ()
Initializes some internals: molecule-fixed to lab-fixed frame rotation matrix, permittivity tensor in
molecule-fixed frame and its inverse

Private Members
Eigen::Vector3d epsilonLab_
Diagonal of the permittivity tensor in the lab-fixed frame.

Eigen::Vector3d eulerAngles_
Euler angles (in degrees) relating molecule-fixed and lab-fixed frames.

Eigen::Matrix3d epsilon__
Permittivity tensor in molecule-fixed frame.

Eigen::Matrix3d epsilonInv_
Inverse of the permittivity tensor in molecule-fixed frame.

Eigen::Matrix3d R _
molecule-fixed to lab-fixed frames rotation matrix

double detEps__
Determinant of the permittivity tensor.

4.3.3 Yukawa

struct Yukawa
describes a medium with damping, i.e. ionic liquid

Author Roberto Di Remigio
Date 2015

82 Chapter 4. Classes and functions reference

PCMSolver

4.3.4 OnelLayerlLog

class pcm::dielectric_profile: :OneLayerLog
A dielectric profile based on the Harrison and Fosso-Tande work [3].
Author Luca Frediani

Date 2017

Public Functions

std::tuple<double, double> operator () (const double r) const
Returns a tuple holding the permittivity and its derivative
Parameters

* [in] r: evaluation point

Private Functions
double value (double point) const
Returns value of dielectric profile at given point
Parameters
* [in] point: where to evaluate the profile

double derivative (double point) const
Returns value of derivative of dielectric profile at given point

Parameters

e [in] point: where to evaluate the derivative

Private Members

double epsilonl_
Dielectric constant on the left of the interface.

double epsilon2_
Dielectric constant one the right of the interface.

double width
Width of the transition layer.

double center_
Center of the transition layer.

std::pair<double, double> domain_
Domain of the permittivity function This is formally [0, 4+00), for all practical purposes the permittivity
function is equal to the epsilon2_ already at 6.0 * width_ Thus the upper limit in the domain_ is initialized
as center_ + 12.0 * width_

4.3. Dielectric profiles 83

PCMSolver

4.3.5 OnelLayerTanh

class pcm::dielectric_profile::OneLayerTanh

A tanh dielectric profile as in [4].

Author Roberto Di Remigio
Date 2014

Note The parameter given from user input for width_ is divided by 6.0 in the constructor to keep consistency
with [4]

Public Functions

std::tuple<double, double> operator () (const double r) const
Returns a tuple holding the permittivity and its derivative
Parameters

* [in] r: evaluation point

Private Functions
double value (double point) const
Returns value of dielectric profile at given point
Note We return epsilon2_ when the sampling point is outside the upper limit.
Parameters
* [in] point: where to evaluate the profile

double derivative (double point) const
Returns value of derivative of dielectric profile at given point

Note We return 0.0 (derivative of the constant value epsilon2_) when the sampling point is outside the
upper limit.

Parameters

* [in] point: where to evaluate the derivative

Private Members

double epsilonl_
Dielectric constant on the left of the interface.

double epsilon2_
Dielectric constant one the right of the interface.

double width
Width of the transition layer.

double center_
Center of the transition layer.

84

Chapter 4. Classes and functions reference

PCMSolver

std::pair<double, double> domain_
Domain of the permittivity function This is formally [0, 40c), for all practical purposes the permittivity
function is equal to the epsilon2_ already at 6.0 * width_ Thus the upper limit in the domain_ is initialized
as center_ + 12.0 * width_

4.3.6 OnelLayerErf

class pcm::dielectric_profile::0OneLayerErf
A erf dielectric profile.
Author Roberto Di Remigio
Date 2015

Note The parameter given from user input for width_ is divided by 6.0 in the constructor to keep consistency
with [4]

Public Functions

std::tuple<double, double> operator () (const double r) const
Returns a tuple holding the permittivity and its derivative
Parameters

* [in] r: evaluation point

Private Functions
double value (double point) const
Returns value of dielectric profile at given point
Note We return epsilon2_ when the sampling point is outside the upper limit.
Parameters
* [in] point: where to evaluate the profile

double derivative (double point) const
Returns value of derivative of dielectric profile at given point

Note We return 0.0 (derivative of the constant value epsilon2_) when the sampling point is outside the
upper limit.

Parameters

e [in] point: where to evaluate the derivative

4.3. Dielectric profiles 85

PCMSolver

Private Members
double epsilonl_
Dielectric constant on the left of the interface.

double epsilon2_
Dielectric constant one the right of the interface.

double width
Width of the transition layer.

double center
Center of the transition layer.

std::pair<double, double> domain__
Domain of the permittivity function This is formally [0, +00), for all practical purposes the permittivity
function is equal to the epsilon2_ already at 6.0 * width_ Thus the upper limit in the domain_ is initialized
as center_ + 12.0 * width_

4.3.7 Sharp

struct Sharp
A sharp dielectric separation.
Author Roberto Di Remigio
Date 2015

4.4 Solvers

We will here describe the inheritance hierarchy for generating solvers, in order to use and extend it properly. The
runtime creation of solver objects relies on the Factory Method pattern [GHJV94][Ale01], implemented through the
generic Factory class.

4.4.1 ISolver
class pcm::ISolver
Abstract Base Class for solvers inheritance hierarchy.
We use the Non-Virtual Interface idiom.
Author Luca Frediani, Roberto Di Remigio
Date 2011, 2015, 2016
Subclassed by pcm::solver:: CPCMSolver, pcm::solver::IEFSolver

86 Chapter 4. Classes and functions reference

PCMSolver

Public Functions

void buildSystemMatrix (const [Cavity &cavity, const I[GreensFunction &gf i, const

IGreensFunction &gf_o, const IBoundarylntegralOperator &op)
Calculation of the PCM matrix.

Parameters

* [in] cavity: the cavity to be used

* [in] gf_i: Green’s function inside the cavity

* [in] gf_o: Green’s function outside the cavity

* [in] op: integrator strategy for the single and double layer operators

Eigen::VectorXd computeCharge (const Eigen::VectorXd &potential, int irrep = 0) const

Returns the ASC given the MEP and the desired irreducible representation.
Parameters

* [in] potential: the vector containing the MEP at cavity points

* [in] irrep: the irreducible representation of the MEP and ASC

Protected Functions

void buildSystemMatrix_ impl (const [Cavity &cavity, const [GreensFunction &gf i, const
IGreensFunction &gf_o, const [BoundarylntegralOperator
&op) =0
Calculation of the PCM matrix.
Parameters
* [in] cavity: the cavity to be used
* [in] gf_i: Green’s function inside the cavity

* [in] gf_o: Green’s function outside the cavity

* [in] op: integrator strategy for the single and double layer operators

Eigen::VectorXd computeCharge_impl (const Eigen::VectorXd &potential, int irrep = 0) const
=0
Returns the ASC given the MEP and the desired irreducible representation.
Parameters

* [in] potential: the vector containing the MEP at cavity points

* [in] irrep: the irreducible representation of the MEP and ASC

4.4. Solvers 87

PCMSolver

Protected Attributes
bool built_
Whether the system matrix has been built

bool isotropic_
Whether the solver is isotropic

4.4.2 IEFSolver

class pcm::solver::IEFSolver : public pcm::ISolver
IEFPCM, collocation-based solver.
Author Luca Frediani, Roberto Di Remigio
Date 2011, 2015, 2016

Note We store the non-Hermitian, symmetry-blocked T(epsilon) and Rinfinity matrices. The ASC is obtained
by multiplying the MEP by Rinfinity and then using a partially pivoted LU decomposition of T(epsilon)
on the resulting vector. In case the polarization weights are requested, we use the approach suggested in
[2]. First, the adjoint problem is solved:

Tio=v

Also in this case a partially pivoted LU decomposition is used. The “transposed” ASC is obtained by the
matrix-vector multiplication:

g =Rl_7

.I.
o0

Eventually, the two sets of charges are summed and divided by 2 This avoids computing and storing the
inverse explicitly, at the expense of storing both T(epsilon) and Rinfinity.

Public Functions

IEFSolver (bool symm)
Construct solver.
Parameters
* [in] symm: whether the system matrix has to be symmetrized
void buildAnisotropicMatrix (const /Cavity &cavity, const [GreensFunction &gf i, const

IGreensFunction &gf_o, const [BoundarylntegralOperator

&op)
Builds PCM matrix for an anisotropic environment.

Parameters
* [in] cavity: the cavity to be used.
* [in] gf_i: Green’s function inside the cavity
* [in] gf_o: Green’s function outside the cavity

* [in] op: integrator strategy for the single and double layer operators

88 Chapter 4. Classes and functions reference

PCMSolver

void buildIsotropicMatrix (const [Cavity &cavity, const [GreensFunction &gf_i, const
[GreensFunction &gf_o, const [BoundarylntegralOperator &op)
Builds PCM matrix for an isotropic environment.
Parameters
* [in] cavity: the cavity to be used.
* [in] gf_i: Green’s function inside the cavity
* [in] gf_o: Green’s function outside the cavity
* [in] op: integrator strategy for the single and double layer operators

Private Functions

void buildSystemMatrix_impl (const /Cavity &cavity, const [GreensFunction &gf_i, const
IGreensFunction &gf_o, const [BoundarylntegralOperator
&op) override
Calculation of the PCM matrix.
Parameters
* [in] cavity: the cavity to be used
* [in] gf_i: Green’s function inside the cavity
* [in] gf_o: Green’s function outside the cavity

* [in] op: integrator strategy for the single and double layer operators

Eigen::VectorXd computeCharge_impl (const Eigen::VectorXd &potential, int irrep = 0) const

) override .
Returns the ASC given the MEP and the desired irreducible representation.

Parameters
* [in] potential: the vector containing the MEP at cavity points
* [in] irrep: the irreducible representation of the MEP and ASC

Private Members
bool hermitivitize
Whether the system matrix has to be symmetrized

Eigen::MatrixXd Tepsilon__
T(epsilon) matrix, not symmetry blocked

std::vector<Eigen::MatrixXd> blockTepsilon_
T(epsilon) matrix, symmetry blocked form

Eigen::MatrixXd Rinfinity_
R_infinity matrix, not symmetry blocked

std::vector<Eigen::MatrixXd> blockRinfinity_
R_infinity matrix, symmetry blocked form

4.4.

Solvers

PCMSolver

4.4.3 CPCMSolver

class pcm::solver::CPCMSolver : public pcm::ISolver
Solver for conductor-like approximation: C-PCM (COSMO)
Author Roberto Di Remigio
Date 2013, 2016

Note We store the scaled, Hermitian, symmetrized S matrix and use a robust Cholesky decomposition to solve
for the ASC. This avoids computing and storing the inverse explicitly. The S matrix is already scaled by
the dielectric factor entering the definition of the conductor model!

Public Functions

CPCMSolver (bool symm, double corr)
Construct solver.
Parameters
* [in] symm: whether the system matrix has to be symmetrized

e [in] corr: factor to correct the conductor results

Private Functions

void buildSystemMatrix_impl (const /Cavity &cavity, const [GreensFunction &gf_i, const
IGreensFunction &gf_o, const [BoundarylntegralOperator

&op) override
Calculation of the PCM matrix.

Parameters
* [in] cavity: the cavity to be used
* [in] gf_i: Green’s function inside the cavity
* [in] gf_o: Green’s function outside the cavity

* [in] op: integrator strategy for the single layer operator

Eigen::VectorXd computeCharge_impl (const Eigen::VectorXd &potential, int irrep = 0) const
. override .
Returns the ASC given the MEP and the desired irreducible representation.
Parameters

* [in] potential: the vector containing the MEP at cavity points

* [in] irrep: the irreducible representation of the MEP and ASC

920 Chapter 4. Classes and functions reference

PCMSolver

Private Members
bool hermitivitize_
Whether the system matrix has to be symmetrized

double correction_
Correction for the conductor results

Eigen::MatrixXd S_
S matrix, not symmetry blocked

std::vector<Eigen::MatrixXd> blockS_
S matrix, symmetry blocked form

4.5 Boundary integral operators

4.5.1 IBoundaryintegralOperator

class pcm: :IBoundaryIntegralOperator
Subclassed by pcm::bi_operators::Collocation, pcm::bi_operators::Numerical, pcm::bi_operators:: Purisima

Public Functions
Eigen::MatrixXd computeS (const /Cavity &cav, const [GreensFunction &gf) const
Computes the matrix representation of the single layer operator
Parameters
* [in] cav: the discretized cavity
e [in] gf: a Green’s function

Eigen::MatrixXd computeD (const /Cavity &cav, const [GreensFunction &gf) const
Computes the matrix representation of the double layer operator

Parameters
* [in] cav: the discretized cavity

e [in] gf: a Green’s function

Private Functions

Eigen::MatrixXd computeS_impl (const std::vector<cavity::Element> &elems, const [Greens-

Function &gf) const =0
Computes the matrix representation of the single layer operator

Parameters
* [in] elems: list of finite elements of the discretized cavity

* [in] gf: a Green’s function

4.5. Boundary integral operators 91

PCMSolver

Eigen::MatrixXd computeD_impl (const std::vector<cavity::Element> &elems, const [Greens-

Function &gf) const =0
Computes the matrix representation of the double layer operator

Parameters
* [in] elems: list of finite elements of the discretized cavity

e [in] gf: a Green’s function

4.5.2 Collocation

class pcm::bi_operators::Collocation : public pcm::IBoundarylntegralOperator
Implementation of the single and double layer operators matrix representation using one-point collocation.

4
Sy = factor x [—
a;

T 1
D;; = —factor x | ——
v f a; R[

Calculates the diagonal elements of S as:

while the diagonal elements of D are:

Author Roberto Di Remigio
Date 2015, 2016

Private Functions

Eigen::MatrixXd computeS_impl (const std::vector<cavity::Element> &elems, const [Greens-

Function &gf) const override
Computes the matrix representation of the single layer operator

Parameters
* [in] elems: list of finite elements of the discretized cavity
* [in] gf: a Green’s function

Eigen::MatrixXd computeD_impl (const std::vector<cavity::Element> &elems, const I[Greens-

Function &gf) const override
Computes the matrix representation of the double layer operator

Parameters
* [in] elems: list of finite elements of the discretized cavity

e [in] gf: a Green’s function

92 Chapter 4. Classes and functions reference

PCMSolver

Private Members

double factor_
Scaling factor for the diagonal elements of the matrix representation of the S and D operators

4.5.3 Purisima

class pcm: :bi_operators: :Purisima : public pcm::IBoundarylntegralOperator

Implementation of the double layer operator matrix representation using one-point collocation and Purisima’s

strategy for the diagonal of D.
Calculates the diagonal elements of D as:
1
Dii = — 27T+ZDijaj —
J#i
The original reference is [5]
Author Roberto Di Remigio
Date 2015, 2016

Private Functions

Eigen::MatrixXd computeS_impl (const std::vector<cavity::Element> &elems, const [Greens-

Function &gf) const override
Computes the matrix representation of the single layer operator

Parameters
* [in] elems: list of finite elements of the discretized cavity
e [in] gf: a Green’s function

Eigen::MatrixXd computeD_impl (const std::vector<cavity::Element> &elems, const [Greens-
Function &gf) const override

Computes the matrix representation of the double layer operator by collocation using the Purisima sum

rule to compute the diagonal elements. The sum rule for the diagonal elements is:

1
D;;=— |2+ ZDija]‘ —
J#i
Parameters

* [in] elems: discretized cavity

e [in] gf: a Green’s function

4.5. Boundary integral operators

93

PCMSolver

Private Members

double factor_
Scaling factor for the diagonal elements of the matrix representation of the S operator

4.5.4 Numerical

class pcm: :bi_operators: :Numerical : public pcm::IBoundarylntegralOperator
Implementation of the single and double layer operators matrix representation using one-point collocation.
Calculates the diagonal elements of S and D by collocation, using numerical integration.
Author Roberto Di Remigio
Date 2015, 2016

Private Functions

Eigen::MatrixXd computeS_impl (const std::vector<cavity::Element> &elems, const [Greens-

Function &gf) const override
Computes the matrix representation of the single layer operator

Parameters
* [in] elems: list of finite elements of the discretized cavity
e [in] gf: a Green’s function

Eigen::MatrixXd computeD_impl (const std::vector<cavity::Element> &elems, const [Greens-

Function &gf) const override
Computes the matrix representation of the double layer operator

Parameters
* [in] elems: list of finite elements of the discretized cavity

* [in] gf: a Green’s function

4.6 Helper classes and functions

4.6.1 Sphere

struct pcm::utils::Sphere
POD describing a sphere.

Author Roberto Di Remigio
Date 2011, 2016

94 Chapter 4. Classes and functions reference

PCMSolver

Public Functions

void scale (double scaling)
Scale sphere to other units.

4.6.2 Atom

struct pcm::utils::Atom
A POD describing an atom.
Author Roberto Di Remigio
Date 2011, 2016

Public Members
double charge
Atomic charge

double mass
Atomic mass

double radius
Atomic radius

double radiusScaling
Scaling of the atomic radius

Eigen::Vector3d position
Position of the atom

std::string element
Name of the element

std::string symbol
Atomic symbol

4.6.3 ChargeDistribution

struct pcm::utils::ChargeDistribution
POD representing a classical charge distribution.

Author Roberto Di Remigio
Date 2016

4.6. Helper classes and functions

95

PCMSolver

Public Members
Eigen::VectorXd monopoles
Monopoles

Eigen::Matrix3Xd monopolesSites
Monopoles sites

Eigen::Matrix3Xd dipoles
Dipoles

Eigen::Matrix3Xd dipolesSites
Dipoles sites

Eigen::VectorXd FQChi
FQ electronegativities

Eigen::VectorXd FQEta
FQ hardnesses

Eigen::Matrix3Xd FQSites
FQ sites

4.6.4 Molecule

class pcm: :Molecule
Class representing a molecule or general aggregate of atoms.

This class is based on the similar class available in the Mints library of Psi4
Author Roberto Di Remigio
Date 2014

Unnamed Group

Molecule &operator= (const Molecule &other)
Operators Assignment operator.

Public Functions
Molecule ()
Default constructor Initialize a dummy molecule, e.g. as placeholder, see ICavity.cpp loadCavity method.

Molecule (int nat, const FEigen::VectorXd &chg, const Eigen::VectorXd &masses, const
Eigen::Matrix3Xd &geo, const std::vector<Atom> &at, const std::vector<Sphere>

&sph)
Constructor from full molecular data.

This initializes the molecule in C1 symmetry
Parameters

* [in] nat: number of atoms

* [in] chg: vector of atomic charges

e [in] masses: vector of atomic masses

* [in] geo: molecular geometry (format nat*3)

96 Chapter 4. Classes and functions reference

PCMSolver

* [in] at: vector of Atom objects
* [in] sph: vector of Sphere objects

Molecule (int nat, const Eigen::VectorXd &chg, const Eigen::VectorXd &masses, const
Eigen::Matrix3Xd &geo, const std::vector<Atom> &at, const std::vector<Sphere>
&sph, int nr_gen, std::array<int, 3> gens)
Constructor from full molecular data, plus number of generators and generators.

This initializes the molecule in the symmetry prescribed by nr_gen and gen. See documentation of the
Symmetry object for the conventions.

Parameters
* [in] nat: number of atoms
* [in] chg: vector of atomic charges
* [in] masses: vector of atomic masses
* [in] geo: molecular geometry (format nat*3)
* [in] at: vector of Atom objects
* [in] sph: vector of Sphere objects
* [in] nr_gen: number of molecular point group generators
* [in] gen: molecular point group generators

Molecule (int nat, const FEigen::VectorXd &chg, const Eigen::VectorXd &masses, const
Eigen::Matrix3Xd &geo, const std::vector<Atom> &at, const std::vector<Sphere>

&sph, const Symmetry &pg)
Constructor from full molecular data and point group.

This initializes the molecule in the symmetry prescribed by pg.
Parameters

* [in] nat: number of atoms

* [in] chag: vector of atomic charges

e [in] masses: vector of atomic masses

* [in] geo: molecular geometry (format nat*3)

* [in] at: vector of Atom objects

* [in] sph: vector of Sphere objects

* [in] pg: the molecular point group (a Symmetry object)

Molecule (const std::vector<Sphere> &sph)
Constructor from list of spheres.

Molecule is treated as an aggregate of spheres. We do not have information on the atomic species involved
in the aggregate. Charges are set to 1.0; masses are set based on the radii; geometry is set from the list of
spheres. All the atoms are dummy atoms. The point group is C1.

Warning This constructor is to be used exclusively when initializing the Molecule in EXPLICIT mode,
i.e. when the user specifies explicitly spheres centers and radii.

Parameters

* [in] sph: list of spheres

4.6. Helper classes and functions 97

PCMSolver

Molecule (const Molecule &other)
Copy constructor.

void translate (const Eigen::Vector3d &translationVector)
Given a vector, carries out translation of the molecule.

Parameters
e translationVector: The translation vector.

void moveToCOM ()
Performs translation to the Center of Mass Frame.

void rotate (const Eigen::Matrix3d &rotationMatrix)
Given a matrix, carries out rotation of the molecule.

Parameters
* rotationMatrix: The matrix representing the rotation.

void moveToPAF ()
Performs rotation to the Principal Axes Frame.

Private Members
size_t nAtoms__
The number of atoms in the molecule.

Eigen::VectorXd charges_
A vector of dimension (# atoms) containing the charges.

Eigen::VectorXd masses_
A vector of dimension (# atoms) containing the masses.

Eigen::Matrix3Xd geometry__
Molecular geometry, in cartesian coordinates. The dimensions are (# atoms * 3) Units are Bohr.

std::vector<Atom> atoms__
A container for all the atoms composing the molecule.

std::vector<Sphere> spheres__
A container for the spheres composing the molecule.

rotorType rotor__
The molecular rotor type.

Symmetry pointGroup_
The molecular point group.

4.6.5 Solvent

struct pcm::utils::Solvent
POD describing a solvent.

A Solvent object contains all the solvent-related experimental data needed to set up the Green’s functions and
the non-electrostatic terms calculations.

Author Roberto Di Remigio
Date 2011, 2016

98 Chapter 4. Classes and functions reference

PCMSolver

Public Members
std::string name
Solvent name

double epsStatic
Static permittivity, in AU

double epsDynamic
Optical permittivity, in AU

double probeRadius
Radius of the spherical probe mimicking the solvent, in Angstrom

4.6.6 Symmetry
class Symmetry
Contains very basic info about symmetry (only Abelian groups)
Just a wrapper around a vector containing the generators of the group
Author Roberto Di Remigio
Date 2014

Private Members

int nrGenerators_ = {0}
Number of generators

std::array<int, 3> generators_ = {0}
Generators

intnrIrrep_= {1}
Number of irreps

4.6.7 Mathematical utilities

namespace pcm
PCMSolver, an API for the Polarizable Continuum Model Copyright (C) 2020 Roberto Di Remigio, Luca Fre-
diani and collaborators.

This file is part of PCMSolver.

PCMSolver is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

PCMSolver is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with PCMSolver. If not, see
http://www.gnu.org/licenses/.

For information on the complete list of contributors to the PCMSolver API, see: http://pcmsolver.readthedocs.io/

4.6. Helper classes and functions 99

http://www.gnu.org/licenses/
http://pcmsolver.readthedocs.io/

PCMSolver

PCMSolver, an API for the Polarizable Continuum Model Copyright (C) 2020 Roberto Di Remigio, Luca Fre-
diani and contributors.

This file is part of PCMSolver.

PCMSolver is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

PCMSolver is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with PCMSolver. If not, see
http://www.gnu.org/licenses/.

For information on the complete list of contributors to the PCMSolver API, see: http://pcmsolver.readthedocs.io/

namespace utils

Functions

template<size_t nBits>
int parity (std::bitset<nBits> bitrep)

Calculate the parity of the bitset as defined by: bitrep[0] XOR bitrep[1] XOR ... XOR bitrep[nBits-1]
Parameters

e [in] bitrep: abitset
Template Parameters

e nBits: lenght of the input bitset

double parity (unsigned int i)

Returns parity of input integer. The parity is defined as the result of using XOR on the bitrep of the
given integer. For example: 2 -> 010 -> 0*1"0=1->-1.06-> 110 -> 1" 1"0=0-> 1.0
Parameters

* [in] 1i: an integer, usually an index for an irrep or a symmetry operation
It can also be interpreted as the action of a given operation on the Cartesian axes: zyx Parity 0 000 E
1.0 1001 Oyz-1.02 010 Oxz-1.03 011 C2z 1.04 100 Oxy -1.0 5 101 C2y 1.06 110 C2x 1.0 7 111
i-1.0

bool isZero (double value, double threshold)

Returns true if value is less or equal to threshold
Parameters

e [in] wvalue: the value to be checked

e [in] threshold: the threshold

bool numericalZero (double value)

Returns true if value is less than 1.0e-14
Parameters
e [in] wvalue: the value to be checked

template<typename T>
int sign (7 val)

This function implements the signum function and returns the sign of the passed value: -1, 0 or 1
Parameters
e [in] wval: value whose sign should be determined

100

Chapter 4. Classes and functions reference

http://www.gnu.org/licenses/
http://pcmsolver.readthedocs.io/

PCMSolver

Template Parameters
 T: of the parameter val

void symmetryBlocking (Eigen::MatrixXd &matrix, PCMSolverlndex cavitySize, PCM-
SolverIndex ntsirr, int nr_irrep)

void symmet ryPacking (std::vector<Eigen::MatrixXd> &blockedMatrix, const
Eigen::MatrixXd &fullMatrix, int dimBlock, int nrBlocks)
Parameters
* [out] blockedMatrix: the result of packing fullMatrix
* [in] fullMatrix: the matrix to be packed
* [in] dimBlock: the dimension of the square blocks
[in] nrBlocks: the number of square blocks

template<typename Derived>
void hermitivitize (Eigen::MatrixBase<Derived> &obj_)

Given obj_ returns 0.5 * (obj_ + obj_"dagger)

Note We check if a matrix or vector was given, since in the latter case we only want the complex
conjugation operation to happen.

Parameters
* [out] obj_: the Eigen object to be hermitivitized

Template Parameters
* Derived: the numeric type of obj_ elements

void eulerRotation (Eigen::Matrix3d &R_, const Eigen::Vector3d &eulerAngles_)
Build rotation matrix between two reference frames given the Euler angles.

We assume the convention R = Z3X57; for the ordering of the extrinsic elemental rotations (see
http://en.wikipedia.org/wiki/Euler_angles) The Euler angles are given in the order ¢, 0, 1. If we write
¢i, s; © = 1, 3 for their cosines and sines the rotation matrix will be:

C1C3 — S1€283 —S81€3 — C1C253 5253
R= €183 + 81C2C3 —S183 + C1C2C3 —S2C3
5152 C152 C2

Eigen’s geometry module is used to calculate the rotation matrix
Parameters
e [out] R_: the rotation matrix

* [in] eulerAngles_: the Euler angles, in degrees, describing the rotation

double 1inearInterpolation (const double point, const std::vector<double> &grid,

const std::vector<double> &function)
Return value of function defined on grid at an arbitrary point.

This function finds the nearest values for the given point and performs a linear interpolation.
Warning This function assumes that grid has already been sorted!
Parameters

* [in] point: where the function has to be evaluated

* [in] grid: holds points on grid where function is known

e [in] function: holds known function values

double splineInterpolation (const double poinf, const std::vector<double> &grid,

const std::vector<double> &function)
Return value of function defined on grid at an arbitrary point.

This function finds the nearest values for the given point and performs a cubic spline interpolation.
Warning This function assumes that grid has already been sorted!
Parameters

e [in] point: where the function has to be evaluated

4.6. Helper classes and functions 101

http://en.wikipedia.org/wiki/Euler_angles

PCMSolver

* [in] grid: holds points on grid where function is known
e [in] function: holds known function values

template<typename Derived>
void print_eigen_matrix (const Eigen::MatrixBase<Derived> &matrix, const std::string

&fname)
Prints Eigen object (matrix or vector) to file.

Note This is for debugging only, the format is in fact rather ugly. Row index Column index Matrix
entry 0 0 0.0000
Parameters
* [in] matrix: Eigen object
e [in] fname: name of the file
Template Parameters
* Derived: template parameters of the MatrixBase object

Eigen::MatrixXd prune_zero_columns (const Eigen::MatrixXd &incoming, const

Eigen::Matrix<bool, 1, Eigen::Dynamic> &filter)
Prune zero columns from matrix.

Outgoing matrix has the same number of rows as the incoming.
Parameters

* [in] incoming: Matrix to be pruned

* [in] filter: indexing array for pruning

Eigen::VectorXd prune_vector (const Eigen::VectorXd &incoming, const

Eigen::Matrix<bool, 1, Eigen::Dynamic> &filter)
Prune zero elements from Vector.

Parameters
* [in] incoming: VectorXd to be pruned
* [in] filter: indexing array for pruning

namespace cnpy

namespace custom
Custom overloads for cnpy load and save functions

Functions

template<typename Scalar, int Rows, int Cols>
void npy_save (const std::string &fname, const Eigen::Matrix<Scalar, Rows, Cols> &obj)
Save Eigen object to NumPy array file.

Parameters
e fname: name of the NumPy array file
* ob7j: Eigen object to be saved, either a matrix or a vector
Template Parameters
* Scalar: the data type of the matrix to be returned. Default is double
* Rows: number of rows in the Eigen object. Default is dynamic e
e Cols: number of columns in the Eigen object. Default is dynamic

template<typename Scalar, int Rows, int Cols>
void npz_save (const std:string &fname, const std:string &name, const

Eigen::Matrix<Scalar, Rows, Cols> &obj, bool overwrite = false)
Save Eigen object to a compressed NumPy file.

Parameters

102 Chapter 4. Classes and functions reference

PCMSolver

e fname: name of the compressed NumPy file
* name: tag for the given object in the compressed NumPy file
* obj: Eigen object to be saved, either a matrix or a vector
* overwrite: if file exists, overwrite. Appends by default.
Template Parameters
* Scalar: the data type of the matrix to be returned. Default is double
* Rows: number of rows in the Eigen object. Default is dynamic
* Cols: number of columns in the Eigen object. Default is dynamic

template<typename Scalar>
Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> npy_to_eigen (const NpyArray
&npy_array)
Load NpyArray object into Eigen object.

Todo:
Extend to read in also data in row-major (C) storage order

Return An Eigen object (matrix or vector) with the data

Warning We check that the rank of the object read is not more than 2 Eigen cannot handle general
tensors.

Parameters
* npy_array: the NpyArray object

Template Parameters
* Scalar: the data type of the matrix to be returned. Default is double

template<typename Scalar>
Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> npy_load (const std::string &fname)
Load NumPy array file into Eigen object.

Todo:
Extend to read in also data in row-major (C) storage order

Return An Eigen object (matrix or vector) with the data
Parameters
e fname: name of the NumPy array file
Template Parameters
* Scalar: the data type of the matrix to be returned. Default is double

Namespaces

We use namespaces to delimit the visibility of functions and classes defined in the various subdirectories of the project.
Namespaces provide a convenient layered structure to the project and we use them as a convention to signal which
functions and classes are supposed to be used in any given layer. The top-level namespace is called pcm and includes
all functions and classes that can be called from the outside world, i.e. a C++ API. Each subdirectory introduces a new
namespace of the same name, nested into pcm. Code that can be used _outside_ of a given subdirectory is put directly
in the pcm namespace, i.e. the outermost layer. Finally, the namespace detail, at the third level of nesting, is used for
functions and classes that are used exclusively within the code in a given subdirectory.

4.6. Helper classes and functions 103

PCMSolver

104 Chapter 4. Classes and functions reference

CHAPTER
FIVE

REFERENCES

105

PCMSolver

106 Chapter 5. References

CHAPTER
SIX

INDICES AND TABLES

* genindex
¢ modindex

¢ search

107

PCMSolver

108 Chapter 6. Indices and tables

[AleO1]

[AZB94]

[Cli]

[CGL98]

[GHIV94]

[KopO8]

[RCC+92]

[Sut99]

[SA04]

[TMCO05]

[WAB+14]

[Bondi64]

BIBLIOGRAPHY

Andrei Alexandrescu. Modern C++ design: generic programming and design patterns applied. Addison-
Wesley Longman Publishing Co., Inc., 2001. ISBN 0-201-70431-5.

Norman L Allinger, Xuefeng Zhou, and John Bergsma. Molecular mechanics parameters. Journal of
Molecular Structure: THEOCHEM, 312(1):69-83, 1 January 1994. doi:10.1016/S0166-1280(09)80008-
0.

Marshall P. Cline. C++ FAQ. URL: http://www.parashift.com/c++-faq.

Marshall P. Cline, Mike Girou, and Greg Lomow. C++ FAQs. Addison-Wesley Longman Publishing Co.,
Inc., 1998. ISBN 0201309831.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc., 1994. ISBN 0-201-63361-2.

Joachim Kopp. Efficient numerical diagonalization of hermitian 3x3 matrices. Int. J. Mod. Phys. C,
19(03):523-548, 2008. doi:10.1142/S0129183108012303.

A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff. UFF, a
full periodic table force field for molecular mechanics and molecular dynamics simulations. J.
Am. Chem. Soc., 114(25):10024-10035, 1992. URL: http://pubs.acs.org/doi/abs/10.1021/ja00051a040,
doi:10.1021/j200051a040.

Herb Sutter. Exceptional C++: 47 engineering puzzles, programming problems, and solutions. Addison-
Wesley Longman Publishing Co., Inc., 1999. ISBN 0-201-61562-2.

Herb Sutter and Andrei Alexandrescu. C++ Coding Standards: 101 Rules, Guidelines, and Best Practices
(C++ in Depth Series). Addison-Wesley Professional, 2004. ISBN 0321113586.

Jacopo Tomasi, Benedetta Mennucci, and Roberto Cammi. Quantum mechanical continuum solvation
models. Chem. Rev., 105(8):2999-3093, 2005. doi:10.1021/cr99040009.

Greg Wilson, D a Aruliah, C Titus Brown, Neil P Chue Hong, Matt Davis, Richard T Guy,
Steven H D Haddock, Kathryn D Huff, lan M Mitchell, Mark D Plumbley, Ben Waugh, Ethan P
White, and Paul Wilson. Best practices for scientific computing. PLoS Biol., 12(1):e1001745,
2014. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3886731\T 1\textbackslash{ } &
tool=pmcentrez\T 1\textbackslash{ } &rendertype=abstract, doi:10.1371/journal.pbio.1001745.

A. Bondi. van der Waals Volumes and Radii. J. Phys. Chem., 68(3):441-451, 1964. URL: http://pubs.acs.
org/doi/pdf/10.1021/j100785a001, doi: 10.1021/j100785a001.

[CancesMennucci98] Eric Cances and Benedetta Mennucci. New Applications of Integral Equations Methods for

Solvation Continuum Models: Ionic Solutions and Liquid Crystals. J. Math. Chem., 23:309-326, 1998.
doi:10.1023/A:1019133611148.

109

https://doi.org/10.1016/S0166-1280(09)80008-0
https://doi.org/10.1016/S0166-1280(09)80008-0
http://www.parashift.com/c++-faq
https://doi.org/10.1142/S0129183108012303
http://pubs.acs.org/doi/abs/10.1021/ja00051a040
https://doi.org/10.1021/ja00051a040
https://doi.org/10.1021/cr9904009
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3886731\T1\textbackslash {}&tool=pmcentrez\T1\textbackslash {}&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3886731\T1\textbackslash {}&tool=pmcentrez\T1\textbackslash {}&rendertype=abstract
https://doi.org/10.1371/journal.pbio.1001745
http://pubs.acs.org/doi/pdf/10.1021/j100785a001
http://pubs.acs.org/doi/pdf/10.1021/j100785a001
https://doi.org/10.1021/j100785a001
https://doi.org/10.1023/A:1019133611148

PCMSolver

[MantinaChamberlinValero+09] Manjeera Mantina, Adam C. Chamberlin, Rosendo Valero, Christopher J. Cramer,
and Donald G. Truhlar. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A,
113:5806-5812, 2009. URL: http://pubs.acs.org/doi/pdf/10.1021/jp8111556, doi: 10.1021/jp8111556.

110 Bibliography

http://pubs.acs.org/doi/pdf/10.1021/jp8111556
https://doi.org/10.1021/jp8111556

A

Area, 9
Atoms, 10

C

Center, 14
cnpy (C++ type), 102

cnpy: :custom (C++ type), 102

cnpy: :custom: :npy_load (C++ function), 103
cnpy: :custom: :npy_save (C++ function), 102
cnpy::custom: :npy_to_eigen (C++ function),

103

cnpy: :custom: :npz_save (C++ function), 102

CODATA, 9
Correction, 12

D

Der, 13
DiagonalIntegrator, 12
DiagonalScaling, 12
Dipoles, 15

E

Eps, 13
Epsl, 13
Eps2, 14
EpsDyn, 13
EpsDynl, 14
EpsDyn2, 14

G

Geometry, 15

Fl

HostWriter (C++ type), 19

InterfaceOrigin, 14

M

MatrixSymm, 12
MaxL, 14

INDEX

MinRadius, 10
Mode, 10
Monopoles, 15

N

Nonequilibrium, 11
NonPolarizable, 16
NpzFile, 9

P

pcm (C++ type), 99

pcm: :bi_operators::Collocation (C++
class), 92

pcm: :bi_operators::Collocation: :computeD_impl
(C++ function), 92

pcm: :bi_operators::Collocation: :computeS_impl
(C++ function), 92

pcm: :bi_operators::Collocation::factor_
(C++ member), 93

pcm: :bi_operators: :Numerical (C++ class),
94

pcm: :bi_operators: :Numerical: :computeD_impl
(C++ function), 94

pcm: :bi_operators::Numerical: :computeS_impl
(C++ function), 94

pcm: :bi_operators: :Purisima (C++ class), 93

pcm: :bi_operators::Purisima: :computeD_impl
(C++ function), 93

pcm: :bi_operators::Purisima: :computeS_impl
(C++ function), 93

pcm: :bi_operators::Purisima::factor_
(C++ member), 94

pcm: :cavity: :GePolCavity (C++ class), 67

pcm: :cavity::GePolCavity: :build (C++
function), 67

pcm: :cavity::GePolCavity: :makeCavity
(C++ function), 67

pcm: :cavity::GePolCavity: :writeOFF (C++
function), 67

pcm: :cavity: :RestartCavity (C++ class), 68

pcm: :cavity::RestartCavity: :makeCavity
(C++ function), 68

111

PCMSolver

pcm: :dielectric_profile::Anisotropic pcm: :dielectric_profile: :OnelLayerTanh
(C++ class), 82 (C++ class), 84

pcm: :dielectric_profile::Anisotropic: :Anpsmtrdpédtectric_profile::0OnelLayerTanh: :center_
(C++ function), 82 (C++ member), 84

pcm: :dielectric_profile::Anisotropic::buptd: :dielectric_profile::0OnelayerTanh::derivative
(C++ function), 82 (C++ function), 84

pcm: :dielectric_profile::Anisotropic::depBms:dielectric_profile::0OnelLayerTanh: :domain_
(C++ member), 82 (C++ member), 84

pcm: :dielectric_profile::Anisotropic: :eppthondielectric_profile::0OnelayerTanh::epsilonl__
(C++ member), 82 (C++ member), 84

pcm: :dielectric_profile::Anisotropic: :eppchondnglectric_profile::0OnelLayerTanh::epsilon2_
(C++ member), 82 (C++ member), 84

pcm: :dielectric_profile::Anisotropic: :eppthon@ablectric_profile::0OnelLayerTanh: :operator ()
(C++ member), 82 (C++ function), 84

pcm: :dielectric_profile::Anisotropic::eupemAndiesectric_profile::0OnelayerTanh::value
(C++ member), 82 (C++ function), 84

pcm: :dielectric_profile::Anisotropic::R_pcm::dielectric_profile::0OnelLayerTanh::width_
(C++ member), 82 (C++ member), 84

pcm: :dielectric_profile::OnelayerErf pcm::dielectric_profile::Sharp (C++
(C++ class), 85 struct), 86

pcm: :dielectric_profile::OnelayerErf::ceptmr:dielectric_profile::Uniform (C++
(C++ member), 86 struct), 81

pcm: :dielectric_profile::OnelayerErf: :depematdvelectric_profile::Yukawa (C++
(C++ function), 85 struct), 82

pcm: :dielectric_profile::OnelLayerErf::dopamn:green: :AnisotropicLiquid (C++ class),
(C++ member), 86 76

pcm: :dielectric_profile: :OnelayerErf: :eppchondreen: :AnisotropicLiquid: :AnisotropicLiquid
(C++ member), 86 (C++ function), 76

pcm: :dielectric_profile::OnelayerErf: :eppdhongdreen: :AnisotropicLiquid: :doublelLayer_impl
(C++ member), 86 (C++ function), 77

pcm: :dielectric_profile::0OnelayerErf: :oppecmtogieen: :AnisotropicLiquid: :kernelD_impl
(C++ function), 85 (C++ function), 77

pcm: :dielectric_profile::OnelayerErf::vapum::green: :AnisotropicLiquid: :operator ()
(C++ function), 85 (C++ function), 77

pcm: :dielectric_profile::OnelayerErf::width: :green: :AnisotropicLiquid: ::permittivity
(C++ member), 86 (C++ function), 76

pcm: :dielectric_profile::0OnelayerLog pcm: :green: :AnisotropiclLiquid: :singlelayer_impl
(C++ class), 83 (C++ function), 77

pcm: :dielectric_profile::OnelayerLog: :ceptmr:green: :GreensFunction (C++ class), 71
(C++ member), 83 pcm: :green: :GreensFunction: :delta_ (C++

pcm: :dielectric_profile::OnelLayerLog: :derivatiweember), 73
(C++ function), 83 pcm: :green: :GreensFunction: :derivativeProbe

pcm: :dielectric_profile::OnelayerLog: :domain_ (C++ function), 71
(C++ member), 83 pcm: :green: :GreensFunction: :derivativeSource

pcm: :dielectric_profile: :OnelayerLog: :epsilonl_(C++ function), 71
(C++ member), 83 pcm: :green: :GreensFunction: :gradientProbe

pcm: :dielectric_profile: :OnelayerLog: :epsilon2 (C++ function), 72
(C++ member), 83 pcm: :green: :GreensFunction: :gradientSource

pcm: :dielectric_profile::OnelayerLog: :operator (C++ function), 72
(C++ function), 83 pcm: :green: :GreensFunction: :kernelS_impl

pcm: :dielectric_profile::OnelLayerLog: :value (C++ function), 72
(C++ function), 83 pcm: :green: :GreensFunction: :operator ()

pcm: :dielectric_profile::OnelayerLog: :width_ (C++ function), 72
(C++ member), 83 pcm: :green: :GreensFunction: :profile_

112 Index

PCMSolver

pcm:

pcm:
pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

:green::IonicLiquid:

(C++ function), 75

(C++ function), 76

:green: :SphericalDiffuse (C++ class),

77

:green: :SphericalDiffuse:

(C++ function), 78

:green: :SphericalDiffuse:

(C++ function), 79

:green: :SphericalDiffuse:

(C++ function), 79

:green: :SphericalDiffuse:

(C++ function), 79

:green: :SphericalDiffuse:

(C++ function), 80

:green: :SphericalDiffuse:

(C++ function), 81

:green: :SphericalDiffuse:

(C++ function), 80

:green: :SphericalDiffuse:

(C++ function), 79

:green: :SphericalDiffuse:

(C++ function), 78

:green: :SphericalDiffuse:

(C++ function), 80

:green: :SphericalDiffuse:

(C++ function), 81

:green: :SphericalDiffuse:

(C++ function), 80

:green: :SphericalDiffuse:

(C++ member), 78

:green: :SphericalDiffuse:

(C++ member), 78

:green: :SphericalDiffuse:

(C++ member), 78

:green: :SphericalDiffuse:

(C++ member), 78

:green: :SphericalDiffuse:

(C++ function), 80

:green: :SphericalDiffuse:

(C++ member), 81

:green: :SphericalDiffuse:

(C++ function), 79

:singlelayer_imppcm:

:coefficienp€nuigmben: :UniformDielectric:

:Coulomb

:kernelD_impl

(C++ member), 73 pcm: :green: :SphericalDiffuse::singlelLayer_impl
:green: :GreensFunction: :uniform (C++ function), 81

(C++ function), 72 pcm: :green: : SphericalDiffuse: :SphericalDiffuse
:green: :IonicLiquid (C++ class), 75 (C++ function), 79
:green::IonicLiquid: :doublelayer_imppcm: :green: :SphericalDiffuse::zeta_

(C++ function), 76 (C++ member), 78
:green::IonicLiquid: :kernelD_impl pcm: :green: :SphericalDiffuse::zetaC_

(C++ function), 75 (C++ member), 78
:green::IonicLiquid: :operator () pcm: :green: :UniformDielectric (C++ class),

(C++ function), 75 74
:green: :IonicLiquid: ::permittivity pcm: :green: :UniformDielectric: :doublelLayer_impl

(C++ function), 75
:green::UniformDielectric:
(C++ function), 74

:kernelD_impl

pcm: :green: :UniformDielectric: :operator ()
(C++ function), 74
:coefficienpcmmpdgreen: :UniformDielectric: :permittivity

(C++ function), 74
:singlelayer_impl
(C++ function), 75

:coefficienpCnulgmbBerivVatnum (C++ class), 73

pcm: :green: :Vacuum: :doublelLayer_impl
(C++ function), 74

pcm: :green: :Vacuum: :kernelD_impl (C++

:CoulombDerivativefunction), 73

pcm: :green: :Vacuum: :operator () (C++ func-

:doublelLayer_impl tion), 73

pcm: :green: :Vacuum: :permittivity (C++

:epsilon function), 73

pcm: :green: :Vacuum: :singleLayer_impl
:imagePotential (C++ function), 73

pcm: : IBoundaryIntegralOperator (C++
:imagePotentialCompasspy®i_impl

pcm: : IBoundaryIntegralOperator: :computeD

: imagePotentialDedCasit fimetion), 91

pcm: : IBoundaryIntegralOperator: :computeD_impl

:initSphericalDiff@ser function), 92

pcm: : IBoundaryIntegralOperator:
(C++ function), 91

rcomputeS

pcm: : IBoundaryIntegralOperator: :computeS_impl
:maxLC_ (C++ function), 91

pcm: : ICavity (C++ class), 65
:maxLGreen_pcm: :ICavity: :built (C++ member), 66

pcm: :ICavity::elementArea_ (C++ member),
:omega_ 66

pcm: :ICavity::elementCenter_ (C++ mem-
:omegaC__ ber), 66

pcm: :ICavity::elementNormal_ (C++ mem-
:operator () ber), 66

pcm: :ICavity::elementRadius_ (C++ mem-
rorigin_ ber), 66

pcm: :ICavity: :elements_ (C++ member), 67
:permittivipgm: :ICavity: :elementSphereCenter_ (C++

member), 66

Index

113

PCMSolver

pcm: :ICavity: : ICavity (C++ function), 65, 66 34
pcm: :ICavity: :loadCavity (C++ function), 66 pcm::Input::epsilonStatic2_ (C++ member),
pcm: : ICavity: :makeCavity (C++ function), 67 34
pcm: :ICavity: :molecule_ (C++ member), 66 pcm: : Input::epsilonStaticOutside_ (C++
pcm: :ICavity: :nElements_ (C++ member), 66 member), 34
pcm: :ICavity::nIrrElements_ (C++ member), pcm::Input::fragments_ (C++ member), 34
66 pcm: : Input: :geometry_ (C++ member), 34
pcm: :ICavity: :nSpheres_ (C++ member), 66 pcm: : Input::greenInsideType_ (C++ mem-
pcm: :ICavity: :pointGroup_ (C++ member), 67 ber), 34
pcm: :ICavity: :saveCavity (C++ function), 66 pcm::Input::greenOutsideType_ (C++ mem-
pcm: :ICavity: :sphereCenter_ (C++ member), ber), 34
66 pcm: : Input: :hasSolvent_ (C++ member), 33
pcm: :ICavity: :sphereRadius_ (C++ member), pcm::Input::hermitivitize_ (C++ member),
67 33
pcm: :ICavity: :spheres_ (C++ member), 66 pcm: : Input: : Input (C++ function), 32
pcm: : IGreensFunction (C++ class), 68 pcm: : Input::integratorScaling_ (C++ mem-
pcm: : IGreensFunction: :doubleLayer (C++ ber), 34
function), 69 pcm: : Input::integratorType_ (C++ member),
pcm: : IGreensFunction: :doublelayer_impl 33
(C++ function), 70 pcm: : Input: :isDynamic_ (C++ member), 33
pcm: : IGreensFunction: :kernelD (C++ func- pcm::Input::isFQ_ (C++ member), 34
tion), 69 pcm: : Input::isNonPolarizable_ (C++ mem-
pcm: : IGreensFunction: :kernelD_impl (C++ ber), 34
function), 70 pcm: : Input: :maxL_ (C++ member), 34
pcm: : IGreensFunction: :kernelS (C++ func- pcm::Input::MEPfromChargeDist_ (C++ mem-
tion), 69 ber), 34
pcm: : IGreensFunction: :kernelS_impl (C++ pcm::Input::MEPfromMolecule_ (C++ mem-
function), 70 ber), 34
pcm: : IGreensFunction: :permittivity (C++ pcm::Input::minimalRadius_ (C++ member),
function), 71 33
pcm: : IGreensFunction: :singleLayer (C++ pcm::Input::mode_ (C++ member), 33
function), 69 pcm: : Input: :molecule (C++ function), 32
pcm: : IGreensFunction: :singlelLayer_impl pcm::Input::molecule_ (C++ member), 33
(C++ function), 70 pcm: : Input::multipoles_ (C++ member), 34
pcm: : IGreensFunction: :uniform (C++ func- pcm::Input::operator<< (C++ function), 35
tion), 71 pcm: : Input::origin_ (C++ member), 34
pcm: : Input (C++ class), 31 pcm: : Input: :probeRadius_ (C++ member), 33
pcm: : Input::area_ (C++ member), 33 pcm: : Input: :providedBy (C++ function), 32
pcm: : Input: :atoms_ (C++ member), 33 pcm: : Input: :providedBy_ (C++ member), 35
pcm: : Input: :cavFilename_ (C++ member), 33 pcm: : Input: :radii_ (C++ member), 33
pcm: : Input::cavityParams (C++ function), 32 pcm::Input::radiiSet_ (C++ member), 33
pcm: : Input: :cavityType_ (C++ member), 33 pcm: : Input: :radiiSetName_ (C++ member), 33
pcm: : Input: :center_ (C++ member), 34 pcm: : Input: : reader (C++ function), 32
pcm: : Input: :CODATAyear_ (C++ member), 33 pcm: : Input: :scaling (C++ function), 32
pcm: : Input: :correction_ (C++ member), 33 pcm: : Input: :scaling_ (C++ member), 33
pcm: : Input::epsilonDynamicl_ (C++ mem- pcm::Input::semanticCheck (C++ function), 32
ber), 34 pcm: : Input: :solvent (C++ function), 32
pcm: : Input::epsilonDynamic2_ (C++ mem- pcm::Input::solvent_ (C++ member), 33
ber), 34 pcm: : Input: :solverType_ (C++ member), 33
pcm: : Input::epsilonDynamicOutside_ (C++ pcm: :Input::spheres_ (C++ member), 33
member), 34 pcm: : Input: :units (C++ function), 32
pcm: :Input::epsilonInside_ (C++ member), pcm::Input::units_ (C++ member), 33
34 pcm: : Input: :width_ (C++ member), 34
pcm: : Input::epsilonStaticl_ (C++ member), pcm::ISolver (C++ class), 86
114 Index

PCMSolver

pcm:

pcm:

pcm:
pcm:

pcm:

pcm:
pcm:
pcm:
pcm:
pcm:

pcm:

pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:

pcm:
pcm:
pcm:

pcm:

pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:

pcm:
pcm:
pcm:

pcm:
pcm:
pcm:
pcm:

pcm:
pcm:
pcm:
pcm:

pcm:

:ISolver: :buildSystemMatrix (C++

function), 87

:ISolver::buildSystemMatrix_impl

(C++ function), 87

:ISolver: :built_ (C++ member), 88
:ISolver: :computeCharge (C++ function),

87

:ISolver: :computeCharge_impl (C++

function), 87

:ISolver: :isotropic_ (C++ member), 88
:Meddle (C++ class), 26

:Meddle: :cavity_ (C++ member), 31
:Meddle: : computeASC (C++ function), 28
:Meddle: :computePolarizationEnergy

(C++ function), 29

:Meddle: :computeResponseASC (C++

function), 28

:Meddle: : CTORBody (C++ function), 30
:Meddle: :FQ_ (C++ member), 31

:Meddle: : functions_ (C++ member), 31
:Meddle: : GaussCheck (C++ function), 31
:Meddle: :getAreas (C++ function), 28
:Meddle: :getASCDipole (C++ function), 29
:Meddle: :getCavitySize (C++ function),

27

:Meddle: :getCenter (C++ function), 28
:Meddle: :getCenters (C++ function), 28
:Meddle: :getIrreducibleCavitySize

(C++ function), 28

:Meddle: :getSurfaceFunction (C++

function), 29

:Meddle: :hasDynamic_ (C++ member), 31
:Meddle: :hasFQ_ (C++ member), 31
:Meddle: :host_input_ (C++ member), 31
:Meddle: :hostWriter_ (C++ member), 31
:Meddle: :infoStream_ (C++ member), 31
:Meddle: :initCavity (C++ function), 30
:Meddle: :initDynamicSolver (C++ func-

tion), 30

:Meddle: :initInput (C++ function), 30
:Meddle: : initMMFQ (C++ function), 30
:Meddle::initStaticSolver (C++ func-

tion), 30

:Meddle: :input_ (C++ member), 31
:Meddle: :K_0_ (C++ member), 31

:Meddle: :K_d_ (C++ member), 31

:Meddle: :loadSurfaceFunction (C++

function), 30

:Meddle: :Meddle (C++ function), 26, 27
:Meddle: :mediumInfo (C++ function), 31
:Meddle: :molecule (C++ function), 27
:Meddle: :printCitation (C++ function),

30

:Meddle: :Printer (C++ struct), 31

pcm:
pcm:

pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm: :
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:

pcm:

pcm:
pcm:

pcm:

pcm:

pcm:

pcm:

:Meddle: :printInfo (C++ function), 30
:Meddle: :printSurfaceFunction (C++

function), 29

:Meddle: :saveSurfaceFunction (C++

function), 30

:Meddle: :saveSurfaceFunctions (C++

function), 29

:Meddle: :setSurfaceFunction (C++

function), 29

:Meddle: :size_ (C++ member), 31
:Meddle: :writeTimings (C++ function), 30
:Molecule (C++ class), 96

:Molecule: :atoms_ (C++ member), 98
:Molecule: :charges_ (C++ member), 98
:Molecule: :geometry_ (C++ member), 98
:Molecule: :masses_ (C++ member), 98
:Molecule: :Molecule (C++ function), 96—

98

:Molecule: :moveToCOM (C++ function), 98
:Molecule: :moveToPAF (C++ function), 98
:Molecule: :nAtoms_ (C++ member), 98
:Molecule: :operator= (C++ function), 96
:Molecule: :pointGroup_ (C++ member),

98

:Molecule: :rotate (C++ function), 98
:Molecule: :rotor_ (C++ member), 98
:Molecule: :spheres_ (C++ member), 98
:Molecule: :translate (C++ function), 98

solver: :CPCMSolver (C++ class), 90

:solver::CPCMSolver: :blockS_ (C++

member), 91

:solver::CPCMSolver: :buildSystemMatrix_impl

(C++ function), 90

:solver::CPCMSolver: :computeCharge_impl

(C++ function), 90

:solver::CPCMSolver: :correction_

(C++ member), 91

:solver: :CPCMSolver: :CPCMSolver

(C++ function), 90

:solver::CPCMSolver: :hermitivitize_

(C++ member), 91

:solver: :CPCMSolver: :S_ (C++ member),

91

:solver::IEFSolver (C++ class), 88
:solver::IEFSolver::blockRinfinity__

(C++ member), 89

:solver::IEFSolver: :blockTepsilon_

(C++ member), 89

:solver::IEFSolver: :buildAnisotropicMatrix

(C++ function), 88

:solver::IEFSolver::buildIsotropicMatrix

(C++ function), 88

:solver::IEFSolver: :buildSystemMatrix_impl

(C++ function), 89

Index

115

PCMSolver

pcm: :
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:
pcm:

pcm:

pcm:
pcm:

pcm:
pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:

pcm:
pcm:

pcm:

pcm:
pcm:

pcm:
pcm:

pcm:
pcm:

:utils::ChargeDistribution:

solver::IEFSolver:
(C++ function), 89

(C++ member), 96

:utils::eulerRotation (C++ function),
101
:utils::hermitivitize (C++ function),

101

:utils::iszero (C++ function), 100
:utils::linearInterpolation

(C++
function), 101

:utils::numericalZero (C++ function),

100

:utils: :parity (C++ function), 100
:utils::print_eigen_matrix (C++ func-

tion), 102

:utils: :prune_vector (C++ function), 102
:utils: :prune_zero_columns (C++ func-

tion), 102

:utils: :sign (C++ function), 100
:utils::Solvent (C++ struct), 98

:computeCharge_impdtm: :

utils::Solvent:
member), 99

:epsDynamic (C++

:solver::IEFSolver::hermitivitize_ pcm::utils::Solvent::epsStatic (C++ mem-
(C++ member), 89 ber), 99
:solver::IEFSolver: :IEFSolver (C++ pcm::utils::Solvent: :name (C++ member), 99
function), 88 pcm: :utils::Solvent: :probeRadius (C++
:solver::IEFSolver: :Rinfinity_ (C++ member), 99
member), 89 pcm: :utils: : Sphere (C++ struct), 94
:solver::IEFSolver: :Tepsilon_ (C++ pcm::utils::Sphere::scale (C++ function), 95
member), 89 pcm::utils::splineInterpolation (C++
:utils (C++ type), 100 function), 101
:utils: :Atom (C++ struct), 95 pcm: :utils::symmetryBlocking (C++ func-
:utils::Atom: :charge (C++ member), 95 tion), 101
:utils::Atom: :element (C++ member),95 pcm::utils::symmetryPacking (C++ function),
:utils::Atom: :mass (C++ member), 95 101
:utils::Atom: :position (C++ member), PCMInput (C++ struct), 25
95 PCMInput: :area (C++ member), 25
:utils::Atom: :radius (C++ member), 95 PCMInput: :cavity_type (C++ member), 25
:utils::Atom: :radiusScaling (C++ PCMInput::coarsity (C++ member), 25
member), 95 PCMInput: :correction (C++ member), 26
:utils::Atom: : symbol (C++ member), 95 PCMInput: :der_order (C++ member), 25
:utils::ChargeDistribution (C++ PCMInput::equation_type (C++ member), 26
struct), 95 PCMInput: :inside_type (C++ member), 26
:utils::ChargeDistribution: :dipoles PCMInput::min_distance (C++ member), 25
(C++ member), 96 PCMInput: :min_radius (C++ member), 26
:utils::ChargeDistribution::dipolesSREMEnput: :outside_epsilon (C++ member), 26
(C++ member), 96 PCMInput: :outside_type (C++ member), 26
:utils::ChargeDistribution: :FQChi PCMInput: :patch_level (C++ member), 25
(C++ member), 96 PCMInput: :probe_radius (C++ member), 26
:utils::ChargeDistribution: :FQEta PCMInput: :radii_set (C++ member), 25
(C++ member), 96 PCMInput: :restart_name (C++ member), 26
:utils::ChargeDistribution: :FQSites PCMInput::scaling (C++ member), 25
(C++ member), 96 PCMInput: :solvent (C++ member), 26
:utils::ChargeDistribution: :monopoleBCMInput: :solver_type (C++ member), 26
(C++ member), 96 pcmsolver_bool_t (C++ type), 19

:monopolepBmsedver_bool_t_DEFINED (C macro), 19

pcmsolver_citation (C++ function), 22
pcmsolver_compute_asc (C++ function), 23
pcmsolver_compute_polarization_energy
(C++ function), 23
pcmsolver_compute_response_asc (C++ func-
tion), 23
pcmsolver_context_t (C++ type), 19
pcmsolver_delete (C++ function), 22
PCMSolver_EXPORT (C macro), 19
pcmsolver_get_areas (C++ function), 23
pcmsolver_get_asc_dipole (C++ function), 24
pcmsolver_get_cavity_size (C++ function), 22
pcmsolver_get_center (C++ function), 22
pcmsolver_get_centers (C++ function), 22
pcmsolver_get_irreducible_cavity_size
(C++ function), 22
pcmsolver_get_surface_function (C++ func-
tion), 24

116

Index

PCMSolver

pcmsolver_is_compatible_library (C++ U

Sfunction), 22 Units, 9

pcmsolver_load_surface_function (C++
function), 25

pcmsolver_new (C++ function), 20 Width, 14

pcmsolver_new_read_host (C++ function), 20
pcmsolver_new_v1112 (C++ function), 20
pcmsolver_print (C++ function), 22
pcmsolver_print_surface_function (C++
function), 24
pcmsolver_reader_t (C++ enum), 19
pcmsolver_reader_t::PCMSOLVER_READER_HOST
(C++ enumerator), 19
pcmsolver_reader_t::PCMSOLVER_READER_OWN
(C++ enumerator), 19
pcmsolver_refresh (C++ function), 21
pcmsolver_save_surface_function (C++
function), 24
pcmsolver_save_surface_functions (C++
function), 24
pcmsolver_set_bool_option (C++ function), 21
pcmsolver_set_double_option (C++ function),
21
pcmsolver_set_int_option (C++ function), 21
pcmsolver_set_string_option (C++ function),

21
pcmsolver_set_surface_function (C++ func-
tion), 24

pcmsolver_write_timings (C++ function), 25
ProbeRadius, 12
Profile, 13

R

Radii, 10
RadiiSet, 10

S

Scaling, 10

Sites, 16

SitesPerFragment, 16

Solvent, 11

SolverType, 11

Spheres, 11

Symmetry (C++ class), 99

Symmetry: :generators_ (C++ member), 99
Symmetry: :nrGenerators_ (C++ member), 99
Symmetry: :nrIrrep_ (C++ member), 99

T

TIMER_DONE (C macro), 64
TIMER_OFF (C macro), 64
TIMER_ON (C macro), 64
Type, 9,13

Index

117

	PCMSolver Users’ Manual
	Building the module
	Input description
	Input parameters
	Interfacing a QM program and PCMSolver
	Interfacing with a Fortran host
	Interfacing with a C host

	Publications
	Peer-reviewed journal articles
	Theses
	Presentations
	Posters

	PCMSolver Programmers’ Manual
	General Structure
	Coding standards
	Documentation
	CMake usage
	Versioning and minting a new release
	Code contributions
	Changelog
	Updating Eigen Distribution
	Git Pre-Commit Hooks
	Profiling
	Testing
	Timer class

	Classes and functions reference
	Cavities
	Green’s Functions
	Dielectric profiles
	Solvers
	Boundary integral operators
	Helper classes and functions

	References
	Indices and tables
	Bibliography
	Index

